Biology and Biotechnology of the Plant Hormone Ethylene II

Biology and Biotechnology of the Plant Hormone Ethylene II
Author: A.K. Kanellis
Publisher: Springer Science & Business Media
Total Pages: 451
Release: 2012-12-06
Genre: Science
ISBN: 9401144532

The inflorescence of the monoecious maize plant is unique among the Gramineae in the sharp separation of the male and female structures. The male tassel at the terminus of the plant most often sheds pollen before the visual appearance of the receptive silks of th the female ear at a lateral bud, normally at the 10 leaf [I]. Earlier studies examined the ontogeny of the growing tissues beginning with the embryo in the kernel through to the obvious protuberances of the growing point as the kernel germinates. The differentiated developing soon-to-become tassel and the lateral bulges that develop into the ears on the lateral buds become apparent very early in the germinating kernel [2, 3, 46]. A certain number of cells are destined for tassel and ear development [8]. As the plant develops, there is a phase transition [\3, 16] from the vegetative lateral buds to the reproductive lateral buds. This change in phase has been ascribed to genotypic control as evidenced in the differences among different genotypes in the initiation of the reproductive [I]. The genetic control of tassel and ear initiation has been gleaned from anatomical observations. Lejeune and Bernier [I2] found that maize plants terminate the initiation of additional axillary meristems at the time of tassel initiation. This would indicate that the top-most ear shoot is initiated on the same day as the initiation of tassel development and this event signals the end of the undifferentiated growing point.

Biology and Biotechnology of the Plant Hormone Ethylene II

Biology and Biotechnology of the Plant Hormone Ethylene II
Author: A.K. Kanellis
Publisher: Springer Science & Business Media
Total Pages: 486
Release: 1999-09-30
Genre: Nature
ISBN: 9780792359418

The inflorescence of the monoecious maize plant is unique among the Gramineae in the sharp separation of the male and female structures. The male tassel at the terminus of the plant most often sheds pollen before the visual appearance of the receptive silks of th the female ear at a lateral bud, normally at the 10 leaf [I]. Earlier studies examined the ontogeny of the growing tissues beginning with the embryo in the kernel through to the obvious protuberances of the growing point as the kernel germinates. The differentiated developing soon-to-become tassel and the lateral bulges that develop into the ears on the lateral buds become apparent very early in the germinating kernel [2, 3, 46]. A certain number of cells are destined for tassel and ear development [8]. As the plant develops, there is a phase transition [\3, 16] from the vegetative lateral buds to the reproductive lateral buds. This change in phase has been ascribed to genotypic control as evidenced in the differences among different genotypes in the initiation of the reproductive [I]. The genetic control of tassel and ear initiation has been gleaned from anatomical observations. Lejeune and Bernier [I2] found that maize plants terminate the initiation of additional axillary meristems at the time of tassel initiation. This would indicate that the top-most ear shoot is initiated on the same day as the initiation of tassel development and this event signals the end of the undifferentiated growing point.

Ethylene in Plant Biology

Ethylene in Plant Biology
Author: Frederick B. Abeles
Publisher: Academic Press
Total Pages: 431
Release: 2012-12-02
Genre: Science
ISBN: 0080916287

Ethylene in Plant Biology, Second Edition provides a definitive survey of what is currently known about this structurally simplest of all plant growth regulators. This volume contains all new material plus a bibliographic guide to the complete literature of this field. Progress in molecular biology and biotechnology as well as biochemistry, plant physiology, development, regulation, and environmental aspects is covered in nine chapters co-authored by three eminent authorities in plant ethylene research. This volume is the modern text reference for all researchers and students of ethylene in plant and agricultural science. - Completely updated - Concise, readable style for students and professional - Contains an extensive bibliographic guide to the original literature - Well illustrated with diagrams and photographs - Thorough coverage of: ethylene and ethephon roles and effects stress ethylene, biosynthesis of ethylene, molecular biology of ethylene, action of ethylene, agricultural uses of ethylene

The Plant Hormone Ethylene

The Plant Hormone Ethylene
Author: A. K. Mattoo
Publisher: CRC Press
Total Pages: 722
Release: 2018-01-18
Genre: Science
ISBN: 1351092669

The breadth and depth of knowledge concerning ethylene synthesis and action, coupled with the rapid pace of new progress makes a survey of the field a daunting task. Therefore, experts who were actively engaged in different aspects of ethylene research from different countries, spanning four continents were enlisted to complete this monograph. This book discusses a historical perspective as well as future trends and possibilities in this field.

Plant Hormones

Plant Hormones
Author: P.J. Davies
Publisher: Springer Science & Business Media
Total Pages: 843
Release: 2013-12-01
Genre: Science
ISBN: 9401104735

Plant hormones play a crucial role in controlling the way in which plants growand develop. Whilemetabolism providesthepowerand buildingblocks for plant life, it is the hormones that regulate the speed of growth of the individual parts and integrate these parts to produce the form that we recognize as a plant. In addition, theyplayacontrolling role inthe processes of reproduction. This book is a description ofthese natural chemicals: how they are synthesizedand metabolized; howthey work; whatwe knowoftheir molecular biology; how we measure them; and a description ofsome ofthe roles they play in regulating plant growth and development. Emphasis has also been placed on the new findings on plant hormones deriving from the expanding use ofmolecular biology as a tool to understand these fascinating regulatory molecules. Even at the present time, when the role of genes in regulating all aspects of growth and development is considered of prime importance, it is still clear that the path of development is nonetheless very much under hormonal control, either via changes in hormone levels in response to changes in gene transcription, or with the hormones themselves as regulators ofgene transcription. This is not a conference proceedings, but a selected collection ofnewly written, integrated, illustrated reviews describing our knowledge of plant hormones, and the experimental work that is the foundation of this knowledge.

Biology and Biotechnology of the Plant Hormone Ethylene

Biology and Biotechnology of the Plant Hormone Ethylene
Author: A.K. Kanellis
Publisher: Springer Science & Business Media
Total Pages: 390
Release: 1997-04-30
Genre: Science
ISBN: 9780792345879

Ethylene is a simple gaseous plant hormone produced by higher plants, bacteria and fungi. Thanks to new tools that have become available in biochemistry and molecular genetics, parts of the ethylene biosynthesis, perception and signal transduction reactions have been elucidated. This knowledge has been applied to enhance the quality of a number of agronomically important crops. In Biology and Biotechnology of the Plant Hormone Ethylene, leading figures in the field provide surveys of the current state of ethylene biosynthesis and action, perception and signal transduction pathways, senescence, biotechnological control, and the involvement of ethylene in pathogenesis and stress. Audience: Indispensable to all academic, industrial and agricultural researchers as well as undergraduates and graduates in plant biology, biochemistry, genetics, molecular biology and food science.

Plant Hormones

Plant Hormones
Author: Peter J. Davies
Publisher: Springer Science & Business Media
Total Pages: 830
Release: 2007-11-06
Genre: Science
ISBN: 1402026862

Plant hormones play a crucial role in controlling the way in which plants grow and develop. While metabolism provides the power and building blocks for plant life, it is the hormones that regulate the speed of growth of the individual parts and integrate them to produce the form that we recognize as a plant. This book is a description of these natural chemicals: how they are synthesized and metabolized, how they act at both the organismal and molecular levels, how we measure them, a description of some of the roles they play in regulating plant growth and development, and the prospects for the genetic engineering of hormone levels or responses in crop plants. This is an updated revision of the third edition of the highly acclaimed text. Thirty-three chapters, including two totally new chapters plus four chapter updates, written by a group of fifty-five international experts, provide the latest information on Plant Hormones, particularly with reference to such new topics as signal transduction, brassinosteroids, responses to disease, and expansins. The book is not a conference proceedings but a selected collection of carefully integrated and illustrated reviews describing our knowledge of plant hormones and the experimental work that is the foundation of this information. The Revised 3rd Edition adds important information that has emerged since the original publication of the 3rd edition. This includes information on the receptors for auxin, gibberellin, abscisic acid and jasmonates, in addition to new chapters on strigolactones, the branching hormones, and florigen, the flowering hormone.

Annual Plant Reviews, The Plant Hormone Ethylene

Annual Plant Reviews, The Plant Hormone Ethylene
Author: Michael T. McManus
Publisher: John Wiley & Sons
Total Pages: 433
Release: 2012-02-08
Genre: Science
ISBN: 111822311X

The plant hormone ethylene is one of the most important, being one of the first chemicals to be determined as a naturally-occurring growth regulator and influencer of plant development. It was also the first hormone for which significant evidence was found for the presence of receptors. This important new volume in Annual Plant Reviews is broadly divided into three parts. The first part covers the biosynthesis of ethylene and includes chapters on S-adenosylmethionine and the formation and fate of ACC in plant cells. The second part of the volume covers ethylene signaling, including the perception of ethylene by plant cells, CTR proteins, MAP kinases and EIN2 / EIN3. The final part covers the control by ethylene of cell function and development, including seed development, germination, plant growth, cell separation, fruit ripening, senescent processes, and plant-pathogen interactions. The Plant Hormone Ethylene is an extremely valuable addition to Wiley-Blackwell's Annual Plant Reviews. With contributions from many of the world's leading researchers in ethylene, and edited by Professor Michael McManus of Massey University, this volume will be of great use and interest to a wide range of plant scientists, biochemists and chemists. All universities and research establishments where plant sciences, biochemistry, chemistry, life sciences and agriculture are studied and taught should have access to this important volume.

Biology and Biotechnology of the Plant Hormone Ethylene

Biology and Biotechnology of the Plant Hormone Ethylene
Author: A.K. Kanellis
Publisher: Springer Science & Business Media
Total Pages: 358
Release: 2012-12-06
Genre: Science
ISBN: 9401155461

Ethylene is a simple gaseous plant hormone produced by higher plants, bacteria and fungi. Thanks to new tools that have become available in biochemistry and molecular genetics, parts of the ethylene biosynthesis, perception and signal transduction reactions have been elucidated. This knowledge has been applied to enhance the quality of a number of agronomically important crops. In Biology and Biotechnology of the Plant Hormone Ethylene, leading figures in the field provide surveys of the current state of ethylene biosynthesis and action, perception and signal transduction pathways, senescence, biotechnological control, and the involvement of ethylene in pathogenesis and stress. Audience: Indispensable to all academic, industrial and agricultural researchers as well as undergraduates and graduates in plant biology, biochemistry, genetics, molecular biology and food science.