Biological Electrochemistry

Biological Electrochemistry
Author: Glenn Dryhurst
Publisher: Elsevier
Total Pages: 561
Release: 2012-12-02
Genre: Science
ISBN: 0323146031

Biological Electrochemistry, Volume I is a result of a series of lectures given regarding the electrochemistry of small and large organic and inorganic molecules and how electrochemical information helps in understanding some of the biological redox reactions of these systems. This volume ultimately focuses on the electrochemistry of small and macromolecular organic compounds. This book is divided into seven chapters where each focuses on a particular organic compound. These compounds are quinones, catecholamines, phenothiazines, ascorbic acid, purines, vitamin B12 and related compounds, and proteins. Each chapter starts with a brief introduction to the compounds and then its structure and electrochemistry aspect. The last chapter gives a detailed discussion on different kinds of proteins and their electrochemistry aspects. This volume will be of help to students as well as electrochemists, biochemists, biologists, and other scientists in the field of biotechnology.

Applications of Electrochemistry and Nanotechnology in Biology and Medicine I

Applications of Electrochemistry and Nanotechnology in Biology and Medicine I
Author: Noam Eliaz
Publisher: Springer Science & Business Media
Total Pages: 444
Release: 2011-08-23
Genre: Science
ISBN: 1461403472

The study of electrochemical nanotechnology has emerged as researchers apply electrochemistry to nanoscience and nanotechnology. These two related volumes in the Modern Aspects of Electrochemistry Series review recent developments and breakthroughs in the specific application of electrochemistry and nanotechnology to biology and medicine. Internationally renowned experts contribute chapters that address both fundamental and practical aspects of several key emerging technologies in biomedicine, such as the processing of new biomaterials, biofunctionalization of surfaces, characterization of biomaterials, discovery of novel phenomena and biological processes occurring at the molecular level.

Electrochemistry of Biological Molecules

Electrochemistry of Biological Molecules
Author: Glenn Dryhurst
Publisher: Elsevier
Total Pages: 614
Release: 2012-12-02
Genre: Science
ISBN: 0323144527

Electrochemistry of Biological Molecules presents a fairly complete summary of the electrochemistry of the more important groups of nitrogen heterocyclic molecules including purines and pyrimidines and their nucleosides and nucleotides, polynucleotides and nucleic acids, pteridines, flavins, pyrroles, porphyrins, and pyridines. Topics covered range from the theory and instrumentation of electrochemistry to various biological molecules, including pteridines, isoalloxazines, flavins, and flavin nucleotides. Comprised of nine chapters, this book begins with an overview of electrochemical techniques and their use to study biological materials, followed by a discussion on the theory and instrumentation of electrochemistry, with emphasis on their significance and utility as well aa their principles and circuits. Subsequent chapters explore nitrogen heterocyclic molecules such as purines and pyrimidines and their nucleosides and nucleotides, polynucleotides and nucleic acids, pteridines, flavins, pyrroles, porphyrins, and pyridines. The electrochemistry of biologically important pyridines is considered. This monograph should be of value to electrochemists, biochemists, and biologists.

Handbook of Electrochemistry

Handbook of Electrochemistry
Author: Cynthia G. Zoski
Publisher: Elsevier
Total Pages: 935
Release: 2007-02-07
Genre: Science
ISBN: 0444519580

Electrochemistry plays a key role in a broad range of research and applied areas including the exploration of new inorganic and organic compounds, biochemical and biological systems, corrosion, energy applications involving fuel cells and solar cells, and nanoscale investigations. The Handbook of Electrochemistry serves as a source of electrochemical information, providing details of experimental considerations, representative calculations, and illustrations of the possibilities available in electrochemical experimentation. The book is divided into five parts: Fundamentals, Laboratory Practical, Techniques, Applications, and Data. The first section covers the fundamentals of electrochemistry which are essential for everyone working in the field, presenting an overview of electrochemical conventions, terminology, fundamental equations, and electrochemical cells, experiments, literature, textbooks, and specialized books. Part 2 focuses on the different laboratory aspects of electrochemistry which is followed by a review of the various electrochemical techniques ranging from classical experiments to scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry. Applications of electrochemistry include electrode kinetic determinations, unique aspects of metal deposition, and electrochemistry in small places and at novel interfaces and these are detailed in Part 4. The remaining three chapters provide useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials. * serves as a source of electrochemical information * includes useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials * reviews electrochemical techniques (incl. scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry)

Applications of Electrochemistry in Medicine

Applications of Electrochemistry in Medicine
Author: Mordechay Schlesinger
Publisher: Springer Science & Business Media
Total Pages: 457
Release: 2013-03-02
Genre: Science
ISBN: 1461461480

Medical Applications of Electrochemistry, a volume of the series Modern Aspects of Electrochemistry, illustrates the interdisciplinary nature of modern science by indicating the many current issues in medicine that are susceptible to solution by electrochemical methods. This book also suggests how personalized medicine can develop.

Electrochemistry for Bioanalysis

Electrochemistry for Bioanalysis
Author: Bhavik A. Patel
Publisher: Elsevier
Total Pages: 330
Release: 2021-02-11
Genre: Science
ISBN: 0128212039

Electrochemistry for Bioanalysis provides a comprehensive understanding of the benefits and challenges of the application of electrochemical and electroanalytical techniques for measurement in biological samples. The book presents detailed information on measurement in a host of various biological samples from single cells, tissues and in vivo. Sections cover real insights surrounding key experimental design and measurement within multiple complex biological environments. Finally, users will find discussions on emerging topics such as electrogenerated chemiluminescence and the use of additive manufacturing for biosensor fabrication. Continuous learning reinforcement throughout the book, including problems for self-assessment, make this an ideal resource. Balances the fundamentals of electrochemical and neurochemical methods with current advances in the field of bioanalysis Includes self-assessment scenarios on experimental design and validation to teach readers key factors and considerations in measurement Highlights applications (such as sensors and biosensors) and key points within each chapter

Electrochemical Biosensors

Electrochemical Biosensors
Author: Ali A. Ensafi
Publisher: Elsevier
Total Pages: 390
Release: 2019-07-25
Genre: Science
ISBN: 0128164921

Electrochemical Biosensors summarizes fundamentals and trends in electrochemical biosensing. It introduces readers to the principles of transducing biological information to measurable electrical signals to identify and quantify organic and inorganic substances in samples. The complexity of devices related to biological matrices makes this challenging, but this measurement and analysis are critically valuable in biotechnology and medicine. Electrochemical biosensors combine the sensitivity of electroanalytical methods with the inherent bioselectivity of the biological component. Some of these sensor devices have reached the commercial stage and are routinely used in clinical, environmental, industrial and agricultural applications. - Describes several electrochemical methods used as detection techniques with biosensors - Discusses different modifiers, including nanomaterials, for preparing suitable pathways for immobilizing biomaterials at the sensor - Explains various types of signal monitoring, along with several recognition systems, including antibodies/antigens, DNA-based biosensors, aptamers (protein-based), and more

Electrochemical Processes in Biological Systems

Electrochemical Processes in Biological Systems
Author: Andrzej Lewenstam
Publisher: John Wiley & Sons
Total Pages: 265
Release: 2015-05-26
Genre: Science
ISBN: 0470578459

The first book to provdie a comprehensive look at bioenergetics, the energy flow in living systems, by studying ion exchange and electron transfer processes in biological membranes and artificial bio-films, and how these processes contribute to developing modern biosensor and ion-sensor technology, as well as biofuel cells. The book: Discusses the ion fluxes and electron transfer processes in biological membranes and artificial bio-films Provides an in-depth description of the processes at the interface between the membrane/film and substrate electrode Is the first of its kind to provide a comprehensive look at how these processes are understood in biology of living cells Addresses how these processes contribute to developing modern biosensor and ion-sensor technology, as well as biofuel cells

Modern Electrochemistry

Modern Electrochemistry
Author: John O'M. Bockris
Publisher: Springer Science & Business Media
Total Pages: 876
Release: 1973-10-31
Genre: Science
ISBN: 9780306250026

7 The Electrified Interface.- 7.1 Electrification of an Interface.- 7.1.1 The Electrode-Electrolyte Interface: The Basis of Electrodics.- 7.1.2 New Forces at the Boundary of an Electrolyte.- 7.1.3 The Interphase Region Has New Properties and New Structures.- 7.1.4 An Electrode Is Like a Giant Central Ion.- 7.1.5 The Consequences of Compromise Arrangements: The Electrolyte Side of the Boundary Acquires a Charge.- 7.1.6 Both Sides of the Interface Become Electrified: The So-Called "Electrical Double Layer"--7.1.7 Double Layers Are Characteristic of All Phase Boundaries.- 7.1.8 A Look into an El.