Bioinspired Legged Locomotion
Download Bioinspired Legged Locomotion full books in PDF, epub, and Kindle. Read online free Bioinspired Legged Locomotion ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Maziar Ahmad Sharbafi |
Publisher | : Butterworth-Heinemann |
Total Pages | : 698 |
Release | : 2017-11-21 |
Genre | : Technology & Engineering |
ISBN | : 0128037741 |
Bioinspired Legged Locomotion: Models, Concepts, Control and Applications explores the universe of legged robots, bringing in perspectives from engineering, biology, motion science, and medicine to provide a comprehensive overview of the field. With comprehensive coverage, each chapter brings outlines, and an abstract, introduction, new developments, and a summary. Beginning with bio-inspired locomotion concepts, the book's editors present a thorough review of current literature that is followed by a more detailed view of bouncing, swinging, and balancing, the three fundamental sub functions of locomotion. This part is closed with a presentation of conceptual models for locomotion. Next, the book explores bio-inspired body design, discussing the concepts of motion control, stability, efficiency, and robustness. The morphology of legged robots follows this discussion, including biped and quadruped designs. Finally, a section on high-level control and applications discusses neuromuscular models, closing the book with examples of applications and discussions of performance, efficiency, and robustness. At the end, the editors share their perspective on the future directions of each area, presenting state-of-the-art knowledge on the subject using a structured and consistent approach that will help researchers in both academia and industry formulate a better understanding of bioinspired legged robotic locomotion and quickly apply the concepts in research or products. - Presents state-of-the-art control approaches with biological relevance - Provides a thorough understanding of the principles of organization of biological locomotion - Teaches the organization of complex systems based on low-dimensional motion concepts/control - Acts as a guideline reference for future robots/assistive devices with legged architecture - Includes a selective bibliography on the most relevant published articles
Author | : Toshio Fukuda |
Publisher | : MDPI |
Total Pages | : 555 |
Release | : 2018-11-07 |
Genre | : Technology & Engineering |
ISBN | : 303897045X |
This book is a printed edition of the Special Issue "Bio-Inspired Robotics" that was published in Applied Sciences
Author | : Toshio Fukuda |
Publisher | : Springer |
Total Pages | : 314 |
Release | : 2012-06-15 |
Genre | : Technology & Engineering |
ISBN | : 9783642301360 |
Nowadays, multiple attention have been paid on a robot working in the human living environment, such as in the field of medical, welfare, entertainment and so on. Various types of researches are being conducted actively in a variety of fields such as artificial intelligence, cognitive engineering, sensor- technology, interfaces and motion control. In the future, it is expected to realize super high functional human-like robot by integrating technologies in various fields including these types of researches. The book represents new developments and advances in the field of bio-inspired robotics research introducing the state of the art, the idea of multi-locomotion robotic system to implement the diversity of animal motion. It covers theoretical and computational aspects of Passive Dynamic Autonomous Control (PDAC), robot motion control, multi legged walking and climbing as well as brachiation focusing concrete robot systems, components and applications. In addition, gorilla type robot systems are described as hardware of Multi-Locomotion Robotic system. It is useful for students and researchers in the field of robotics in general, bio-inspired robots, multi-modal locomotion, legged walking, motion control, and humanoid robots. Furthermore, it is also of interest for lecturers and engineers in practice building systems cooperating with humans.
Author | : Abul K. M. Azad |
Publisher | : World Scientific |
Total Pages | : 904 |
Release | : 2012 |
Genre | : Technology & Engineering |
ISBN | : 9814415944 |
This book provides state-of-the-art scientific and engineering research findings and developments in the area of mobile robotics and associated support technologies. The book contains peer reviewed articles presented at the CLAWAR 2012 conference. Robots are no longer confined to industrial and manufacturing environments. A great deal of interest is invested in the use of robots outside the factory environment. The CLAWAR conference series, established as a high profile international event, acts as a platform for dissemination of research and development findings and supports such a trend to address the current interest in mobile robotics to meet the needs of mankind in various sectors of the society. These include personal care, public health, services in the domestic, public and industrial environments. The editors of the book have extensive research experience and publications in the area of robotics in general and in mobile robotics specifically, and their experience is reflected in editing the contents of the book.
Author | : Yunhui Liu |
Publisher | : CRC Press |
Total Pages | : 343 |
Release | : 2011-12-21 |
Genre | : Medical |
ISBN | : 1439854882 |
Robotic engineering inspired by biology—biomimetics—has many potential applications: robot snakes can be used for rescue operations in disasters, snake-like endoscopes can be used in medical diagnosis, and artificial muscles can replace damaged muscles to recover the motor functions of human limbs. Conversely, the application of robotics technology to our understanding of biological systems and behaviors—biorobotic modeling and analysis—provides unique research opportunities: robotic manipulation technology with optical tweezers can be used to study the cell mechanics of human red blood cells, a surface electromyography sensing system can help us identify the relation between muscle forces and hand movements, and mathematical models of brain circuitry may help us understand how the cerebellum achieves movement control. Biologically Inspired Robotics contains cutting-edge material—considerably expanded and with additional analysis—from the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). These 16 chapters cover both biomimetics and biorobotic modeling/analysis, taking readers through an exploration of biologically inspired robot design and control, micro/nano bio-robotic systems, biological measurement and actuation, and applications of robotics technology to biological problems. Contributors examine a wide range of topics, including: A method for controlling the motion of a robotic snake The design of a bionic fitness cycle inspired by the jaguar The use of autonomous robotic fish to detect pollution A noninvasive brain-activity scanning method using a hybrid sensor A rehabilitation system for recovering motor function in human hands after injury Human-like robotic eye and head movements in human–machine interactions A state-of-the-art resource for graduate students and researchers in the fields of control engineering, robotics, and biomedical engineering, this text helps readers understand the technology and principles in this emerging field.
Author | : Pablo González de Santos |
Publisher | : Springer Science & Business Media |
Total Pages | : 272 |
Release | : 2007-02-17 |
Genre | : Technology & Engineering |
ISBN | : 1846283078 |
Walking machines have advantages over traditional vehicles, and have already accomplished tasks that wheeled or tracked robots cannot handle. Nevertheless, their use in industry and services is currently limited in scope. This book brings together methods and techniques that have been developed to deal with obstacles to wider acceptance of legged robots. Part I provides an historical overview. Part II concentrates on control techniques, as applied to Four-legged robots.
Author | : Marc H. Raibert |
Publisher | : MIT Press |
Total Pages | : 254 |
Release | : 1986 |
Genre | : Computers |
ISBN | : 9780262181174 |
This book, by a leading authority on legged locomotion, presents exciting engineering and science, along with fascinating implications for theories of human motor control. It lays fundamental groundwork in legged locomotion, one of the least developed areas of robotics, addressing the possibility of building useful legged robots that run and balance. The book describes the study of physical machines that run and balance on just one leg, including analysis, computer simulation, and laboratory experiments. Contrary to expectations, it reveals that control of such machines is not particularly difficult. It describes how the principles of locomotion discovered with one leg can be extended to systems with several legs and reports preliminary experiments with a quadruped machine that runs using these principles. Raibert's work is unique in its emphasis on dynamics and active balance, aspects of the problem that have played a minor role in most previous work. His studies focus on the central issues of balance and dynamic control, while avoiding several problems that have dominated previous research on legged machines. Marc Raibert is Associate Professor of Computer Science and Robotics at Carnegie-Mellon University and on the editorial board of The MIT Press journal, Robotics Research. Legged Robots That Balanceis fifteenth in the Artificial Intelligence Series, edited by Patrick Winston and Michael Brady.
Author | : Mattia Frasca |
Publisher | : World Scientific |
Total Pages | : 211 |
Release | : 2004-06-28 |
Genre | : Technology & Engineering |
ISBN | : 9814482307 |
This book deals with locomotion control of biologically inspired robots realized through an analog circuital paradigm as cellular nonlinear networks. It presents a general methodology for the control of bio-inspired robots and several case studies, as well as describes a new approach to motion control and the related circuit architecture.Bio-inspired Emergent Control of Locomotion Systems provides researchers with a guide to the fundamentals of the topics. Moreover, neuro-biologists and physiologists can use the book as a starting point to design artificial structures for testing their biological hypotheses on the animal model.
Author | : Habib, Maki K. |
Publisher | : IGI Global |
Total Pages | : 484 |
Release | : 2019-07-26 |
Genre | : Technology & Engineering |
ISBN | : 1799801381 |
Advanced research in the field of mechatronics and robotics represents a unifying interdisciplinary and intelligent engineering science paradigm. It is a holistic, concurrent, and interdisciplinary engineering science that identifies novel possibilities of synergizing and fusing different disciplines. The Handbook of Research on Advanced Mechatronic Systems and Intelligent Robotics is a collection of innovative research on the methods and applications of knowledge in both theoretical and practical skills of intelligent robotics and mechatronics. While highlighting topics including green technology, machine learning, and virtual manufacturing, this book is ideally designed for researchers, students, engineers, and computer practitioners seeking current research on developing innovative ideas for intelligent robotics and autonomous and smart interdisciplinary mechatronic products.
Author | : Randall D. Beer |
Publisher | : |
Total Pages | : 440 |
Release | : 1993 |
Genre | : Computers |
ISBN | : |
Second in a series emphasizing the interdisciplinary exchange of ideas central to advances in neural networks research. This book surveys neural control of movement and orientation, describes computer models of neural control circuits, and gives examples of actual robot implementations.