Bio-Succinic Acid Production from Raw Sugar - Cost Analysis - Succinic Acid E11B

Bio-Succinic Acid Production from Raw Sugar - Cost Analysis - Succinic Acid E11B
Author: Intratec
Publisher: Intratec Solutions
Total Pages: 52
Release: 2017-06-01
Genre: Business & Economics
ISBN: 1641481323

This report presents a cost analysis of bio-based Succinic Acid production from raw sugar using a fermentation process. The process examined is similar to Korea Advanced Institute of Science & Technology (KAIST) process. In this process, raw sugar (sucrose) is diluted and sucrose is hydrolyzed into glucose and fructose (invert sugars). The invert sugars are then fermented to produce Succinic Acid. This report examines one-time costs associated with the construction of a Germany-based plant and the continuing costs associated with the daily operation of such a plant. More specifically, it discusses: * Capital Investment, broken down by: - Total fixed capital required, divided in production unit (ISBL); infrastructure (OSBL) and contingency - Alternative perspective on the total fixed capital, divided in direct costs, indirect costs and contingency - Working capital and costs incurred during industrial plant commissioning and start-up * Production cost, broken down by: - Manufacturing variable costs (raw materials, utilities) - Manufacturing fixed costs (maintenance costs, operating charges, plant overhead, local taxes and insurance) - Depreciation and corporate overhead costs * Raw materials consumption, products generation and labor requirements * Process block flow diagram and description of industrial site installations (production unit and infrastructure) This report was developed based essentially on the following reference(s): WO Patent 2009082050, issued to Korea Advanced Institute of Science & Technology (KAIST) in 2009 Keywords: Butanedioic Acid, Dicarboxylic Acid

Bio-Succinic Acid Production from Raw Sugar - Cost Analysis - Succinic Acid E14B

Bio-Succinic Acid Production from Raw Sugar - Cost Analysis - Succinic Acid E14B
Author: Intratec
Publisher: Intratec
Total Pages: 102
Release: 2019-09-17
Genre: Business & Economics
ISBN:

This report presents a cost analysis of bio-based Succinic Acid production from raw sugar using a fermentation process. The process examined is similar to BioAmber process. In this process, raw sugar (sucrose) is diluted and sucrose is hydrolyzed into glucose and fructose (invert sugars). The invert sugars are then fermented to produce Succinic Acid. This report was developed based essentially on the following reference(s): US 20130072714 and WO 2013039647 Patents, both issued to BioAmber in 2013 Keywords: Dextrose, Butanedioic Acid, Anaerobic Fermentation, Applied Carbochemicals, Michigan State University

Bio-Succinic Acid Production from Raw Sugar - Cost Analysis - Succinic Acid E13B

Bio-Succinic Acid Production from Raw Sugar - Cost Analysis - Succinic Acid E13B
Author: Intratec
Publisher: Intratec
Total Pages: 102
Release: 2019-09-17
Genre: Business & Economics
ISBN:

This report presents a cost analysis of bio-based Succinic Acid production from raw sugar using a fermentation process. The process examined is similar to Myriant process. In this process, raw sugar (sucrose) is diluted and sucrose is hydrolyzed into glucose and fructose (invert sugars). The invert sugars are then fermented to produce Succinic Acid. The process generates ammonium sulfate as by-product. This report was developed based essentially on the following reference(s): US Patent 8778656, issued to Myriant in 2014 Keywords: Dextrose, Butanedioic Acid, Anaerobic Fermentation

Bio-Succinic Acid Production from Raw Sugar - Cost Analysis - Succinic Acid E15B

Bio-Succinic Acid Production from Raw Sugar - Cost Analysis - Succinic Acid E15B
Author: Intratec
Publisher: Intratec
Total Pages: 102
Release: 2019-09-17
Genre: Business & Economics
ISBN:

This report presents a cost analysis of bio-based Succinic Acid production from raw sugar using a fermentation process. The process examined is similar to Reverdia process. In this process, raw sugar (sucrose) is diluted and sucrose is hydrolyzed into glucose and fructose (invert sugars). The invert sugars are then fermented to produce Succinic Acid. This report was developed based essentially on the following reference(s): US 9012187 and US 20120040422 Patents, both issued to DSM in 2015 and 2012, respectively Keywords: Dextrose, Butanedioic Acid, Anaerobic Fermentation, DSM, Roquette Freres, Rice University, Biosuccinium

Bio-Succinic Acid Production from Raw Sugar - Cost Analysis - Succinic Acid E12B

Bio-Succinic Acid Production from Raw Sugar - Cost Analysis - Succinic Acid E12B
Author: Intratec
Publisher: Intratec
Total Pages: 102
Release: 2019-09-17
Genre: Business & Economics
ISBN:

This report presents a cost analysis of bio-based Succinic Acid production from raw sugar using a fermentation process. The process examined is similar to Michigan Biotechnology Institute (MBI) process. In this process, raw sugar (sucrose) is diluted and sucrose is hydrolyzed into glucose and fructose (invert sugars). The invert sugars are then fermented to produce Succinic Acid. Electrodialysis is used in Succinic Acid recovery from the fermentation broth. This report was developed based essentially on the following reference(s): US Patent 20140093925 and US Patent 6265190, both issued to Michigan Biotechnology Institute in 2014 and 2001, respectively Keywords: Butanedioic acid, Dextrose, Anaerobic Fermentation, Sodium Succinate, Sodium Hydroxide

Succinic Acid Production Cost Analysis - Overview - Succinic Acid AA01

Succinic Acid Production Cost Analysis - Overview - Succinic Acid AA01
Author: Intratec
Publisher: Intratec Solutions
Total Pages: 52
Release: 2016-03-01
Genre: Business & Economics
ISBN: 1945324236

This report presents alternatives for producing Succinic Acid from different feedstocks and a cost comparison of these alternatives, across different countries. More specifically, the report compares the costs of Succinic Acid production through the following pathways: * Pathway 1: Succinic Acid Production from Maleic Anhydride * Pathway 2: Bio-Succinic Acid Production from Crude Glycerol via Fermentation * Pathway 3: Bio-Succinic Acid Production from Raw Sugar via Fermentation In Pathway 1, Succininc Acid is produced via maleic anhydride hydrogenation. Pathways 2 and 3 are biochemical paths that use renewable feedstocks in the production of Bio-Succinic Acid. The glycerol used in Pathway 2 is obtained as by-product of biodiesel plants. The analysis presented in this report includes: * A comparison of the economic potential of the pathways listed above in several countries, comprising: * Comparative analysis of capital costs * Comparative analysis of production costs * Comparison between product price and raw materials costs of each pathway * An overview of each production pathway, including: * Raw material(s) consumption figures and product(s) generated * Related technology licensors and block flow diagram of representative industrial processes Keywords: Hydrogenation, Hydration, Sucrose, Sugar Inversion, Anaerobic Fermentation, BioAmber, Myriant, Reverdia, Succinity, DSM

Laboratory Experiments in Microbiology

Laboratory Experiments in Microbiology
Author: Ted R. Johnson
Publisher: Benjamin-Cummings Publishing Company
Total Pages: 0
Release: 2013
Genre: Microbiology
ISBN: 9780321794383

Containing 57 thoroughly class-tested and easily customizable exercises,Laboratory Experiements in Microbiology: Tenth Edition provides engaging labs with instruction on performing basic microbiology techniques and applications for undergraduate students in diverse areas, including the biological sciences, the allied health sciences, agriculture, environmental science, nutrition, pharmacy, and various pre-professional programs. The Tenth Edition features an updated art program and a full-color design, integrating valuable micrographs throughout each exercise. Additionally, many of the illustrations have been re-rendered in a modern, realistic, three-dimensional style to better visually engage students. Laboratory Reports for each exercise have been enhanced with new Clinical Applications questions, as well as question relating to Hypotheses or Expected Results. Experiments have been refined throughout the manual and the Tenth Edition includes an extensively revised exercise on transformation in bacteria using pGLO to introduce students to this important technique.

Microbial Strategies for Crop Improvement

Microbial Strategies for Crop Improvement
Author: Mohammad Saghir Khan
Publisher: Springer Science & Business Media
Total Pages: 371
Release: 2009-08-25
Genre: Technology & Engineering
ISBN: 364201979X

With an ever-increasing human population, the demand placed upon the agriculture sector to supply more food is one of the greatest challenges for the agrarian community. In order to meet this challenge, environmentally unfriendly agroch- icals have played a key role in the green revolution and are even today commonly recommended to circumvent nutrient de?ciencies of the soils. The use of ag- chemicals is, though, a major factor for improvement of plant production; it causes a profound deteriorating effect on soil health (soil fertility) and in turn negatively affects the productivity and sustainability of crops. Concern over disturbance to the microbial diversity and consequently soil fertility (as these microbes are involved in biogeochemical processes), as well as economic constraints, have prompted fun- mental and applied research to look for new agro-biotechnologies that can ensure competitive yields by providing suf?ciently not only essential nutrients to the plants but also help to protect the health of soils by mitigating the toxic effects of certain pollutants. In this regard, the role of naturally abundant yet functionally fully unexplored microorganisms such as biofertilizers assume a special signi?cance in the context of supplementing plant nutrients, cost and environmental impact under both conventional practices and derelict environments. Therefore, current devel- ments in sustainability involve a rational exploitation of soil microbial communities and the use of inexpensive, though less bio-available, sources of plant nutrients, which may be made available to plants by microbially-mediated processes.

Petroleum Engineer's Guide to Oil Field Chemicals and Fluids

Petroleum Engineer's Guide to Oil Field Chemicals and Fluids
Author: Johannes Fink
Publisher: Gulf Professional Publishing
Total Pages: 809
Release: 2011-05-13
Genre: Technology & Engineering
ISBN: 0123838452

Petroleum Engineer's Guide to Oil Field Chemicals and Fluids is a comprehensive manual that provides end users with information about oil field chemicals, such as drilling muds, corrosion and scale inhibitors, gelling agents and bacterial control. This book is an extension and update of Oil Field Chemicals published in 2003, and it presents a compilation of materials from literature and patents, arranged according to applications and the way a typical job is practiced. The text is composed of 23 chapters that cover oil field chemicals arranged according to their use. Each chapter follows a uniform template, starting with a brief overview of the chemical followed by reviews, monomers, polymerization, and fabrication. The different aspects of application, including safety and environmental impacts, for each chemical are also discussed throughout the chapters. The text also includes handy indices for trade names, acronyms and chemicals. Petroleum, production, drilling, completion, and operations engineers and managers will find this book invaluable for project management and production. Non-experts and students in petroleum engineering will also find this reference useful. - Chemicals are ordered by use including drilling muds, corrosion inhibitors, and bacteria control - Includes cutting edge chemicals and polymers such as water soluble polymers and viscosity control - Handy index of chemical substances as well as a general chemical index

Algae Based Polymers, Blends, and Composites

Algae Based Polymers, Blends, and Composites
Author: Khalid Mahmood Zia
Publisher: Elsevier
Total Pages: 740
Release: 2017-06-19
Genre: Science
ISBN: 0128123613

Algae Based Polymers, Blends, and Composites: Chemistry, Biotechnology and Material Sciences offers considerable detail on the origin of algae, extraction of useful metabolites and major compounds from algal bio-mass, and the production and future prospects of sustainable polymers derived from algae, blends of algae, and algae based composites. Characterization methods and processing techniques for algae-based polymers and composites are discussed in detail, enabling researchers to apply the latest techniques to their own work. The conversion of bio-mass into high value chemicals, energy, and materials has ample financial and ecological importance, particularly in the era of declining petroleum reserves and global warming. Algae are an important source of biomass since they flourish rapidly and can be cultivated almost everywhere. At present the majority of naturally produced algal biomass is an unused resource and normally is left to decompose. Similarly, the use of this enormous underexploited biomass is mainly limited to food consumption and as bio-fertilizer. However, there is an opportunity here for materials scientists to explore its potential as a feedstock for the production of sustainable materials. - Provides detailed information on the extraction of useful compounds from algal biomass - Highlights the development of a range of polymers, blends, and composites - Includes coverage of characterization and processing techniques, enabling research scientists and engineers to apply the information to their own research and development - Discusses potential applications and future prospects of algae-based biopolymers, giving the latest insight into the future of these sustainable materials