Bio Inspired Neural Sensory Motor Coordination Schemes For Robot Reaching Preshaping And Grasping
Download Bio Inspired Neural Sensory Motor Coordination Schemes For Robot Reaching Preshaping And Grasping full books in PDF, epub, and Kindle. Read online free Bio Inspired Neural Sensory Motor Coordination Schemes For Robot Reaching Preshaping And Grasping ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Eris Chinellato |
Publisher | : Springer |
Total Pages | : 174 |
Release | : 2015-06-19 |
Genre | : Technology & Engineering |
ISBN | : 3319203037 |
This book presents interdisciplinary research that pursues the mutual enrichment of neuroscience and robotics. Building on experimental work, and on the wealth of literature regarding the two cortical pathways of visual processing - the dorsal and ventral streams - we define and implement, computationally and on a real robot, a functional model of the brain areas involved in vision-based grasping actions. Grasping in robotics is largely an unsolved problem, and we show how the bio-inspired approach is successful in dealing with some fundamental issues of the task. Our robotic system can safely perform grasping actions on different unmodeled objects, denoting especially reliable visual and visuomotor skills. The computational model and the robotic experiments help in validating theories on the mechanisms employed by the brain areas more directly involved in grasping actions. This book offers new insights and research hypotheses regarding such mechanisms, especially for what concerns the interaction between the dorsal and ventral streams. Moreover, it helps in establishing a common research framework for neuroscientists and roboticists regarding research on brain functions.
Author | : Mario Köppen |
Publisher | : Springer Science & Business Media |
Total Pages | : 1273 |
Release | : 2009-07-10 |
Genre | : Computers |
ISBN | : 3642024890 |
The two volume set LNCS 5506 and LNCS 5507 constitutes the thoroughly refereed post-conference proceedings of the 15th International Conference on Neural Information Processing, ICONIP 2008, held in Auckland, New Zealand, in November 2008. The 260 revised full papers presented were carefully reviewed and selected from numerous ordinary paper submissions and 15 special organized sessions. 116 papers are published in the first volume and 112 in the second volume. The contributions deal with topics in the areas of data mining methods for cybersecurity, computational models and their applications to machine learning and pattern recognition, lifelong incremental learning for intelligent systems, application of intelligent methods in ecological informatics, pattern recognition from real-world information by svm and other sophisticated techniques, dynamics of neural networks, recent advances in brain-inspired technologies for robotics, neural information processing in cooperative multi-robot systems.
Author | : Jordi Vallverdú |
Publisher | : Springer |
Total Pages | : 307 |
Release | : 2019-04-12 |
Genre | : Medical |
ISBN | : 3030031047 |
This edited volume is about how unprejudiced approaches to real human cognition can improve the design of AI. It covers many aspects of human cognition and across 12 chapters the reader can explore multiple approaches about the complexities of human cognitive skills and reasoning, always guided by experts from different but complimentary academic fields. A central concept is explained: blended cognition, the natural skill of human beings for combining constantly different heuristics during their several task-solving activities. Something that was sometimes observed like a problem as “bad reasoning”, is now the central key for the understanding of the richness, adaptability and creativity of human cognition. The topic of this book connects in a significant way with the disciplines of psychology, neurology, anthropology, philosophy, logics, engineering, logics, and AI. In a nutshell: understanding better humans for designing better machines. Any person with interests on natural and artificial reasoning should read this book as a primary source of inspiration and a way to achieve a critical thinking on these topics.
Author | : José L. Pons |
Publisher | : John Wiley & Sons |
Total Pages | : 358 |
Release | : 2008-04-15 |
Genre | : Technology & Engineering |
ISBN | : 0470987650 |
A wearable robot is a mechatronic system that is designed around the shape and function of the human body, with segments and joints corresponding to those of the person it is externally coupled with. Teleoperation and power amplification were the first applications, but after recent technological advances the range of application fields has widened. Increasing recognition from the scientific community means that this technology is now employed in telemanipulation, man-amplification, neuromotor control research and rehabilitation, and to assist with impaired human motor control. Logical in structure and original in its global orientation, this volume gives a full overview of wearable robotics, providing the reader with a complete understanding of the key applications and technologies suitable for its development. The main topics are demonstrated through two detailed case studies; one on a lower limb active orthosis for a human leg, and one on a wearable robot that suppresses upper limb tremor. These examples highlight the difficulties and potentialities in this area of technology, illustrating how design decisions should be made based on these. As well as discussing the cognitive interaction between human and robot, this comprehensive text also covers: the mechanics of the wearable robot and it’s biomechanical interaction with the user, including state-of-the-art technologies that enable sensory and motor interaction between human (biological) and wearable artificial (mechatronic) systems; the basis for bioinspiration and biomimetism, general rules for the development of biologically-inspired designs, and how these could serve recursively as biological models to explain biological systems; the study on the development of networks for wearable robotics. Wearable Robotics: Biomechatronic Exoskeletons will appeal to lecturers, senior undergraduate students, postgraduates and other researchers of medical, electrical and bio engineering who are interested in the area of assistive robotics. Active system developers in this sector of the engineering industry will also find it an informative and welcome resource.
Author | : Giuseppe Carbone |
Publisher | : Springer Science & Business Media |
Total Pages | : 464 |
Release | : 2012-11-15 |
Genre | : Technology & Engineering |
ISBN | : 1447146646 |
Grasping in Robotics contains original contributions in the field of grasping in robotics with a broad multidisciplinary approach. This gives the possibility of addressing all the major issues related to robotized grasping, including milestones in grasping through the centuries, mechanical design issues, control issues, modelling achievements and issues, formulations and software for simulation purposes, sensors and vision integration, applications in industrial field and non-conventional applications (including service robotics and agriculture). The contributors to this book are experts in their own diverse and wide ranging fields. This multidisciplinary approach can help make Grasping in Robotics of interest to a very wide audience. In particular, it can be a useful reference book for researchers, students and users in the wide field of grasping in robotics from many different disciplines including mechanical design, hardware design, control design, user interfaces, modelling, simulation, sensors and humanoid robotics. It could even be adopted as a reference textbook in specific PhD courses.
Author | : Michael A. Arbib |
Publisher | : MIT Press |
Total Pages | : 1328 |
Release | : 2003 |
Genre | : Neural circuitry |
ISBN | : 0262011972 |
This second edition presents the enormous progress made in recent years in the many subfields related to the two great questions : how does the brain work? and, How can we build intelligent machines? This second edition greatly increases the coverage of models of fundamental neurobiology, cognitive neuroscience, and neural network approaches to language. (Midwest).
Author | : Alexander Verl |
Publisher | : Springer |
Total Pages | : 293 |
Release | : 2015-03-13 |
Genre | : Technology & Engineering |
ISBN | : 3662445069 |
The research areas as well as the knowledge gained for the practical use of robots are growing and expanding beyond manufacturing and industrial automation, making inroads in sectors such as health care and terrain sensing, as well as general assistive systems working in close interaction with humans. In a situation like this, it is necessary for future robot systems to become less stiff and more specialized by taking inspiration from the mechanical compliance and versatility found in natural materials and organisms. At present, a new discipline is emerging in this area, called »Soft Robotics«. It particularly challenges the traditional thinking of engineers, as the confluence of technologies, ranging from new materials, sensors, actuators and production techniques to new design tools, will make it possible to create new systems whose structures are almost completely made of soft materials, which bring about entirely new functions and behaviors, similar in many ways to natural systems. These Proceedings focus on four main topics: • Soft Actuators and Control • Soft Interactions • Soft Robot Assistants: Potential and Challenges • Human-centered »Soft Robotics«.
Author | : Thorsten Schüppstuhl |
Publisher | : Springer Nature |
Total Pages | : 400 |
Release | : 2021 |
Genre | : Robots, Industrial |
ISBN | : 3030740323 |
This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI). The Editors Prof. Dr.-Ing. Thorsten Schüppstuhl is head of the Institute of Aircraft Production Technology (IFPT) at the Hamburg University of Technology. Prof. Dr.-Ing. Kirsten Tracht is head of the Bremen Institute for Mechanical Engineering (bime) at the University of Bremen. Prof. Dr.-Ing. Annika Raatz is head of the Institute of Assembly Technology (match) at the Leibniz University Hannover.
Author | : Ravi Balasubramanian |
Publisher | : Springer |
Total Pages | : 573 |
Release | : 2014-01-03 |
Genre | : Technology & Engineering |
ISBN | : 3319030175 |
“The Human Hand as an Inspiration for Robot Hand Development” presents an edited collection of authoritative contributions in the area of robot hands. The results described in the volume are expected to lead to more robust, dependable, and inexpensive distributed systems such as those endowed with complex and advanced sensing, actuation, computation, and communication capabilities. The twenty-four chapters discuss the field of robotic grasping and manipulation viewed in light of the human hand’s capabilities and push the state-of-the-art in robot hand design and control. Topics discussed include human hand biomechanics, neural control, sensory feedback and perception, and robotic grasp and manipulation. This book will be useful for researchers from diverse areas such as robotics, biomechanics, neuroscience, and anthropologists.
Author | : Lionel Birglen |
Publisher | : Springer Science & Business Media |
Total Pages | : 248 |
Release | : 2008-02-11 |
Genre | : Technology & Engineering |
ISBN | : 3540774580 |
This is a cornerstone publication in robotic grasping. The authors have developed an internationally recognized expertise in this area. Additionally, they designed and built several prototypes which attracted the attention of the scientific community. The purpose of this book is to summarize years of research and to present, in an attractive format, the expertise developed by the authors on a new technology for grasping which has achieved great success both in theory and in practice.