Bifurcation Dynamics In Polynomial Discrete Systems
Download Bifurcation Dynamics In Polynomial Discrete Systems full books in PDF, epub, and Kindle. Read online free Bifurcation Dynamics In Polynomial Discrete Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Albert C. J. Luo |
Publisher | : Springer Nature |
Total Pages | : 440 |
Release | : 2020-11-09 |
Genre | : Technology & Engineering |
ISBN | : 9811552088 |
This is the first book focusing on bifurcation dynamics in 1-dimensional polynomial nonlinear discrete systems. It comprehensively discusses the general mathematical conditions of bifurcations in polynomial nonlinear discrete systems, as well as appearing and switching bifurcations for simple and higher-order singularity period-1 fixed-points in the 1-dimensional polynomial discrete systems. Further, it analyzes the bifurcation trees of period-1 to chaos generated by period-doubling, and monotonic saddle-node bifurcations. Lastly, the book presents methods for period-2 and period-doubling renormalization for polynomial discrete systems, and describes the appearing mechanism and period-doublization of period-n fixed-points on bifurcation trees for the first time, offering readers fascinating insights into recent research results in nonlinear discrete systems.
Author | : Yuri Kuznetsov |
Publisher | : Springer Science & Business Media |
Total Pages | : 648 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 1475739788 |
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.
Author | : Albert C. J. Luo |
Publisher | : Springer Nature |
Total Pages | : 313 |
Release | : 2020-08-13 |
Genre | : Technology & Engineering |
ISBN | : 9811552126 |
This book focuses on bifurcation and stability in nonlinear discrete systems, including monotonic and oscillatory stability. It presents the local monotonic and oscillatory stability and bifurcation of period-1 fixed-points on a specific eigenvector direction, and discusses the corresponding higher-order singularity of fixed-points. Further, it explores the global analysis of monotonic and oscillatory stability of fixed-points in 1-dimensional discrete systems through 1-dimensional polynomial discrete systems. Based on the Yin-Yang theory of nonlinear discrete systems, the book also addresses the dynamics of forward and backward nonlinear discrete systems, and the existence conditions of fixed-points in said systems. Lastly, in the context of local analysis, it describes the normal forms of nonlinear discrete systems and infinite-fixed-point discrete systems. Examining nonlinear discrete systems from various perspectives, the book helps readers gain a better understanding of the nonlinear dynamics of such systems.
Author | : Andrei K. Abramian |
Publisher | : Springer Nature |
Total Pages | : 276 |
Release | : 2020-11-02 |
Genre | : Science |
ISBN | : 303053006X |
This book commemorates the 60th birthday of Dr. Wim van Horssen, a specialist in nonlinear dynamic and wave processes in solids, fluids and structures. In honor of Dr. Horssen’s contributions to the field, it presents papers discussing topics such as the current problems of the theory of nonlinear dynamic processes in continua and structures; applications, including discrete and continuous dynamic models of structures and media; and problems of asymptotic approaches.
Author | : Willy J. F. Govaerts |
Publisher | : SIAM |
Total Pages | : 384 |
Release | : 2000-01-01 |
Genre | : Mathematics |
ISBN | : 9780898719543 |
Dynamical systems arise in all fields of applied mathematics. The author focuses on the description of numerical methods for the detection, computation, and continuation of equilibria and bifurcation points of equilibria of dynamical systems. This subfield has the particular attraction of having links with the geometric theory of differential equations, numerical analysis, and linear algebra.
Author | : Albert C. J. Luo |
Publisher | : John Wiley & Sons |
Total Pages | : 269 |
Release | : 2013-01-25 |
Genre | : Science |
ISBN | : 1118402901 |
Presents a systematic view of vibro-impact dynamics based on the nonlinear dynamics analysis Comprehensive understanding of any vibro-impact system is critically impeded by the lack of analytical tools viable for properly characterizing grazing bifurcation. The authors establish vibro-impact dynamics as a subset of the theory of discontinuous systems, thus enabling all vibro-impact systems to be explored and characterized for applications. Vibro-impact Dynamics presents an original theoretical way of analyzing the behavior of vibro-impact dynamics that can be extended to discontinuous dynamics. All topics are logically integrated to allow for vibro-impact dynamics, the central theme, to be presented. It provides a unified treatment on the topic with a sound theoretical base that is applicable to both continuous and discrete systems Vibro-impact Dynamics: Presents mapping dynamics to determine bifurcation and chaos in vibro-impact systems Offers two simple vibro-impact systems with comprehensive physical interpretation of complex motions Uses the theory for discontinuous dynamical systems on time-varying domains, to investigate the Fermi-oscillator Essential reading for graduate students, university professors, researchers and scientists in mechanical engineering.
Author | : Vignesh Dhakshinamoorthy |
Publisher | : CRC Press |
Total Pages | : 188 |
Release | : 2024-09-06 |
Genre | : Mathematics |
ISBN | : 1040051685 |
The book reviews the application of discrete fractional operators in diverse fields such as biological and chemical reactions, as well as chaotic systems, demonstrating their applications in physics. The dynamical analysis is carried out using equilibrium points of the system for studying their stability properties and the chaotic behaviors are illustrated with the help of bifurcation diagrams and Lyapunov exponents. The book is divided into three parts. Part I deals with the application of discrete fractional operators in chemical reaction-based systems with biological significance. Two different chemical reaction models are analysed- one being disproportionation of glucose, which plays an important role in human physiology and the other is the Lengyel – Epstein chemical model. Chaotic behavior of the systems is studied and the synchronization of the system is performed. Part II covers the analysis of biological systems like tumor immune system and neuronal models by introducing memristor based flux control. The memductance functions are considered as quadratic, periodic, and exponential functions. The final part of the book reviews the complex form of the Rabinovich-Fabrikant system which describes physical systems with strong nonlinearity exhibiting unusual behavior.
Author | : Albert C. J. Luo |
Publisher | : Springer Science & Business Media |
Total Pages | : 458 |
Release | : 2010-07-17 |
Genre | : Technology & Engineering |
ISBN | : 1441957545 |
Dynamical Systems: Discontinuous, Stochasticity and Time-Delay provides an overview of the most recent developments in nonlinear dynamics, vibration and control. This book focuses on the most recent advances in all three areas, with particular emphasis on recent analytical, numerical and experimental research and its results. Real dynamical system problems, such as the behavior of suspension systems of railways, nonlinear vibration and applied control in coal manufacturing, along with the multifractal spectrum of LAN traffic, are discussed at length, giving the reader a sense of real-world instances where these theories are applied. Dynamical Systems: Discontinuous, Stochasticity and Time-Delay also contains material on time-delay systems as they relate to linear switching, dynamics of complex networks, and machine tools with multiple boundaries. It is the ideal book for engineers and academic researchers working in areas like mechanical and control engineering, as well as applied mathematics.
Author | : Yirong Liu |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 464 |
Release | : 2014-10-29 |
Genre | : Mathematics |
ISBN | : 3110389142 |
In 2008, November 23-28, the workshop of ”Classical Problems on Planar Polynomial Vector Fields ” was held in the Banff International Research Station, Canada. Called "classical problems", it was concerned with the following: (1) Problems on integrability of planar polynomial vector fields. (2) The problem of the center stated by Poincaré for real polynomial differential systems, which asks us to recognize when a planar vector field defined by polynomials of degree at most n possesses a singularity which is a center. (3) Global geometry of specific classes of planar polynomial vector fields. (4) Hilbert’s 16th problem. These problems had been posed more than 110 years ago. Therefore, they are called "classical problems" in the studies of the theory of dynamical systems. The qualitative theory and stability theory of differential equations, created by Poincaré and Lyapunov at the end of the 19th century, had major developments as two branches of the theory of dynamical systems during the 20th century. As a part of the basic theory of nonlinear science, it is one of the very active areas in the new millennium. This book presents in an elementary way the recent significant developments in the qualitative theory of planar dynamical systems. The subjects are covered as follows: the studies of center and isochronous center problems, multiple Hopf bifurcations and local and global bifurcations of the equivariant planar vector fields which concern with Hilbert’s 16th problem. The book is intended for graduate students, post-doctors and researchers in dynamical systems. For all engineers who are interested in the theory of dynamical systems, it is also a reasonable reference. It requires a minimum background of a one-year course on nonlinear differential equations.
Author | : Sylvain Calinon |
Publisher | : EPFL Press |
Total Pages | : 248 |
Release | : 2009-08-24 |
Genre | : Computers |
ISBN | : 9781439808672 |
Recent advances in RbD have identified a number of key issues for ensuring a generic approach to the transfer of skills across various agents and contexts. This book focuses on the two generic questions of what to imitate and how to imitate and proposes active teaching methods.