Bifurcation And Stability In Nonlinear Discrete Systems
Download Bifurcation And Stability In Nonlinear Discrete Systems full books in PDF, epub, and Kindle. Read online free Bifurcation And Stability In Nonlinear Discrete Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Albert C. J. Luo |
Publisher | : Springer Nature |
Total Pages | : 313 |
Release | : 2020-08-13 |
Genre | : Technology & Engineering |
ISBN | : 9811552126 |
This book focuses on bifurcation and stability in nonlinear discrete systems, including monotonic and oscillatory stability. It presents the local monotonic and oscillatory stability and bifurcation of period-1 fixed-points on a specific eigenvector direction, and discusses the corresponding higher-order singularity of fixed-points. Further, it explores the global analysis of monotonic and oscillatory stability of fixed-points in 1-dimensional discrete systems through 1-dimensional polynomial discrete systems. Based on the Yin-Yang theory of nonlinear discrete systems, the book also addresses the dynamics of forward and backward nonlinear discrete systems, and the existence conditions of fixed-points in said systems. Lastly, in the context of local analysis, it describes the normal forms of nonlinear discrete systems and infinite-fixed-point discrete systems. Examining nonlinear discrete systems from various perspectives, the book helps readers gain a better understanding of the nonlinear dynamics of such systems.
Author | : John Guckenheimer |
Publisher | : Springer Science & Business Media |
Total Pages | : 475 |
Release | : 2013-11-21 |
Genre | : Mathematics |
ISBN | : 1461211409 |
An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.
Author | : Albert C. J. Luo |
Publisher | : Springer Science & Business Media |
Total Pages | : 503 |
Release | : 2011-12-21 |
Genre | : Technology & Engineering |
ISBN | : 1461415241 |
Regularity and Complexity in Dynamical Systems describes periodic and chaotic behaviors in dynamical systems, including continuous, discrete, impulsive, discontinuous, and switching systems. In traditional analysis, the periodic and chaotic behaviors in continuous, nonlinear dynamical systems were extensively discussed even if unsolved. In recent years, there has been an increasing amount of interest in periodic and chaotic behaviors in discontinuous dynamical systems because such dynamical systems are prevalent in engineering. Usually, the smoothening of discontinuous dynamical system is adopted in order to use the theory of continuous dynamical systems. However, such technique cannot provide suitable results in such discontinuous systems. In this book, an alternative way is presented to discuss the periodic and chaotic behaviors in discontinuous dynamical systems.
Author | : Nikolai Aleksandrovich Magnitskii |
Publisher | : World Scientific |
Total Pages | : 382 |
Release | : 2006 |
Genre | : Mathematics |
ISBN | : 9812773517 |
This book presents a new theory on the transition to dynamical chaos for two-dimensional nonautonomous, and three-dimensional, many-dimensional and infinitely-dimensional autonomous nonlinear dissipative systems of differential equations including nonlinear partial differential equations and differential equations with delay arguments. The transition is described from the Feigenbaum cascade of period doubling bifurcations of the original singular cycle to the complete or incomplete Sharkovskii subharmonic cascade of bifurcations of stable limit cycles with arbitrary period and finally to the complete or incomplete homoclinic cascade of bifurcations. The book presents a distinct view point on the principles of formation, scenarios of occurrence and ways of control of chaotic motion in nonlinear dissipative dynamical systems. All theoretical results and conclusions of the theory are strictly proved and confirmed by numerous examples, illustrations and numerical calculations. Sample Chapter(s). Chapter 1: Systems of Ordinary Differential Equations (1,736 KB). Contents: Systems of Ordinary Differential Equations; Bifurcations in Nonlinear Systems of Ordinary Differential Equations; Chaotic Systems of Ordinary Differential Equations; Principles of the Theory of Dynamical Chaos in Dissipative Systems of Ordinary Differential Equations; Dynamical Chaos in Infinitely-Dimensional Systems of Differential Equations; Chaos Control in Systems of Differential Equations. Readership: Graduate students and researchers in complex and chaotic dynamical systems.
Author | : Yuri Kuznetsov |
Publisher | : Springer Science & Business Media |
Total Pages | : 648 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 1475739788 |
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.
Author | : Albert C. J. Luo |
Publisher | : |
Total Pages | : 313 |
Release | : 2021 |
Genre | : Bifurcation theory |
ISBN | : 9787040552287 |
Author | : Albert C. J. Luo |
Publisher | : Springer Nature |
Total Pages | : 440 |
Release | : 2020-11-09 |
Genre | : Technology & Engineering |
ISBN | : 9811552088 |
This is the first book focusing on bifurcation dynamics in 1-dimensional polynomial nonlinear discrete systems. It comprehensively discusses the general mathematical conditions of bifurcations in polynomial nonlinear discrete systems, as well as appearing and switching bifurcations for simple and higher-order singularity period-1 fixed-points in the 1-dimensional polynomial discrete systems. Further, it analyzes the bifurcation trees of period-1 to chaos generated by period-doubling, and monotonic saddle-node bifurcations. Lastly, the book presents methods for period-2 and period-doubling renormalization for polynomial discrete systems, and describes the appearing mechanism and period-doublization of period-n fixed-points on bifurcation trees for the first time, offering readers fascinating insights into recent research results in nonlinear discrete systems.
Author | : Albert C. J. Luo |
Publisher | : Springer |
Total Pages | : 307 |
Release | : 2016-11-18 |
Genre | : Technology & Engineering |
ISBN | : 3319427784 |
This book examines discrete dynamical systems with memory—nonlinear systems that exist extensively in biological organisms and financial and economic organizations, and time-delay systems that can be discretized into the memorized, discrete dynamical systems. It book further discusses stability and bifurcations of time-delay dynamical systems that can be investigated through memorized dynamical systems as well as bifurcations of memorized nonlinear dynamical systems, discretization methods of time-delay systems, and periodic motions to chaos in nonlinear time-delay systems. The book helps readers find analytical solutions of MDS, change traditional perturbation analysis in time-delay systems, detect motion complexity and singularity in MDS; and determine stability, bifurcation, and chaos in any time-delay system.
Author | : Albert C. J. Luo |
Publisher | : Springer |
Total Pages | : 316 |
Release | : 2015-07-30 |
Genre | : Science |
ISBN | : 3662472759 |
This unique book presents the discretization of continuous systems and implicit mapping dynamics of periodic motions to chaos in continuous nonlinear systems. The stability and bifurcation theory of fixed points in discrete nonlinear dynamical systems is reviewed, and the explicit and implicit maps of continuous dynamical systems are developed through the single-step and multi-step discretizations. The implicit dynamics of period-m solutions in discrete nonlinear systems are discussed. The book also offers a generalized approach to finding analytical and numerical solutions of stable and unstable periodic flows to chaos in nonlinear systems with/without time-delay. The bifurcation trees of periodic motions to chaos in the Duffing oscillator are shown as a sample problem, while the discrete Fourier series of periodic motions and chaos are also presented. The book offers a valuable resource for university students, professors, researchers and engineers in the fields of applied mathematics, physics, mechanics, control systems, and engineering.
Author | : Albert C. J. Luo |
Publisher | : John Wiley & Sons |
Total Pages | : 269 |
Release | : 2013-01-25 |
Genre | : Science |
ISBN | : 1118402901 |
Presents a systematic view of vibro-impact dynamics based on the nonlinear dynamics analysis Comprehensive understanding of any vibro-impact system is critically impeded by the lack of analytical tools viable for properly characterizing grazing bifurcation. The authors establish vibro-impact dynamics as a subset of the theory of discontinuous systems, thus enabling all vibro-impact systems to be explored and characterized for applications. Vibro-impact Dynamics presents an original theoretical way of analyzing the behavior of vibro-impact dynamics that can be extended to discontinuous dynamics. All topics are logically integrated to allow for vibro-impact dynamics, the central theme, to be presented. It provides a unified treatment on the topic with a sound theoretical base that is applicable to both continuous and discrete systems Vibro-impact Dynamics: Presents mapping dynamics to determine bifurcation and chaos in vibro-impact systems Offers two simple vibro-impact systems with comprehensive physical interpretation of complex motions Uses the theory for discontinuous dynamical systems on time-varying domains, to investigate the Fermi-oscillator Essential reading for graduate students, university professors, researchers and scientists in mechanical engineering.