Beyond The Kalman Filter Particle Filters For Tracking Applications
Download Beyond The Kalman Filter Particle Filters For Tracking Applications full books in PDF, epub, and Kindle. Read online free Beyond The Kalman Filter Particle Filters For Tracking Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Branko Ristic |
Publisher | : Artech House |
Total Pages | : 328 |
Release | : 2003-12-01 |
Genre | : Technology & Engineering |
ISBN | : 9781580538510 |
For most tracking applications the Kalman filter is reliable and efficient, but it is limited to a relatively restricted class of linear Gaussian problems. To solve problems beyond this restricted class, particle filters are proving to be dependable methods for stochastic dynamic estimation. Packed with 867 equations, this cutting-edge book introduces the latest advances in particle filter theory, discusses their relevance to defense surveillance systems, and examines defense-related applications of particle filters to nonlinear and non-Gaussian problems. With this hands-on guide, you can develop more accurate and reliable nonlinear filter designs and more precisely predict the performance of these designs. You can also apply particle filters to tracking a ballistic object, detection and tracking of stealthy targets, tracking through the blind Doppler zone, bi-static radar tracking, passive ranging (bearings-only tracking) of maneuvering targets, range-only tracking, terrain-aided tracking of ground vehicles, and group and extended object tracking.
Author | : Felix Govaers |
Publisher | : BoD – Books on Demand |
Total Pages | : 130 |
Release | : 2019-05-22 |
Genre | : Computers |
ISBN | : 1838805362 |
Sensor data fusion is the process of combining error-prone, heterogeneous, incomplete, and ambiguous data to gather a higher level of situational awareness. In principle, all living creatures are fusing information from their complementary senses to coordinate their actions and to detect and localize danger. In sensor data fusion, this process is transferred to electronic systems, which rely on some "awareness" of what is happening in certain areas of interest. By means of probability theory and statistics, it is possible to model the relationship between the state space and the sensor data. The number of ingredients of the resulting Kalman filter is limited, but its applications are not.
Author | : Jose Maria Giron-Sierra |
Publisher | : Springer |
Total Pages | : 443 |
Release | : 2016-11-21 |
Genre | : Technology & Engineering |
ISBN | : 9811025401 |
This is the third volume in a trilogy on modern Signal Processing. The three books provide a concise exposition of signal processing topics, and a guide to support individual practical exploration based on MATLAB programs. This book includes MATLAB codes to illustrate each of the main steps of the theory, offering a self-contained guide suitable for independent study. The code is embedded in the text, helping readers to put into practice the ideas and methods discussed. The book primarily focuses on filter banks, wavelets, and images. While the Fourier transform is adequate for periodic signals, wavelets are more suitable for other cases, such as short-duration signals: bursts, spikes, tweets, lung sounds, etc. Both Fourier and wavelet transforms decompose signals into components. Further, both are also invertible, so the original signals can be recovered from their components. Compressed sensing has emerged as a promising idea. One of the intended applications is networked devices or sensors, which are now becoming a reality; accordingly, this topic is also addressed. A selection of experiments that demonstrate image denoising applications are also included. In the interest of reader-friendliness, the longer programs have been grouped in an appendix; further, a second appendix on optimization has been added to supplement the content of the last chapter.
Author | : Simo Särkkä |
Publisher | : Cambridge University Press |
Total Pages | : 255 |
Release | : 2013-09-05 |
Genre | : Computers |
ISBN | : 110703065X |
A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.
Author | : Yaakov Bar-Shalom |
Publisher | : John Wiley & Sons |
Total Pages | : 583 |
Release | : 2004-04-05 |
Genre | : Technology & Engineering |
ISBN | : 0471465216 |
Expert coverage of the design and implementation of state estimation algorithms for tracking and navigation Estimation with Applications to Tracking and Navigation treats the estimation of various quantities from inherently inaccurate remote observations. It explains state estimator design using a balanced combination of linear systems, probability, and statistics. The authors provide a review of the necessary background mathematical techniques and offer an overview of the basic concepts in estimation. They then provide detailed treatments of all the major issues in estimation with a focus on applying these techniques to real systems. Other features include: * Problems that apply theoretical material to real-world applications * In-depth coverage of the Interacting Multiple Model (IMM) estimator * Companion DynaEst(TM) software for MATLAB(TM) implementation of Kalman filters and IMM estimators * Design guidelines for tracking filters Suitable for graduate engineering students and engineers working in remote sensors and tracking, Estimation with Applications to Tracking and Navigation provides expert coverage of this important area.
Author | : |
Publisher | : Cambridge University Press |
Total Pages | : 389 |
Release | : 2011-07-28 |
Genre | : Mathematics |
ISBN | : 0521876281 |
Introduces object tracking algorithms from a unified, recursive Bayesian perspective, along with performance bounds and illustrative examples.
Author | : Mohinder S. Grewal |
Publisher | : John Wiley & Sons |
Total Pages | : 639 |
Release | : 2015-02-02 |
Genre | : Technology & Engineering |
ISBN | : 111898496X |
The definitive textbook and professional reference on Kalman Filtering – fully updated, revised, and expanded This book contains the latest developments in the implementation and application of Kalman filtering. Authors Grewal and Andrews draw upon their decades of experience to offer an in-depth examination of the subtleties, common pitfalls, and limitations of estimation theory as it applies to real-world situations. They present many illustrative examples including adaptations for nonlinear filtering, global navigation satellite systems, the error modeling of gyros and accelerometers, inertial navigation systems, and freeway traffic control. Kalman Filtering: Theory and Practice Using MATLAB, Fourth Edition is an ideal textbook in advanced undergraduate and beginning graduate courses in stochastic processes and Kalman filtering. It is also appropriate for self-instruction or review by practicing engineers and scientists who want to learn more about this important topic.
Author | : John Stephen Mullane |
Publisher | : Springer Science & Business Media |
Total Pages | : 161 |
Release | : 2011-05-19 |
Genre | : Technology & Engineering |
ISBN | : 3642213898 |
The monograph written by John Mullane, Ba-Ngu Vo, Martin Adams and Ba-Tuong Vo is devoted to the field of autonomous robot systems, which have been receiving a great deal of attention by the research community in the latest few years. The contents are focused on the problem of representing the environment and its uncertainty in terms of feature based maps. Random Finite Sets are adopted as the fundamental tool to represent a map, and a general framework is proposed for feature management, data association and state estimation. The approaches are tested in a number of experiments on both ground based and marine based facilities.
Author | : Nicolas Chopin |
Publisher | : Springer Nature |
Total Pages | : 390 |
Release | : 2020-10-01 |
Genre | : Mathematics |
ISBN | : 3030478459 |
This book provides a general introduction to Sequential Monte Carlo (SMC) methods, also known as particle filters. These methods have become a staple for the sequential analysis of data in such diverse fields as signal processing, epidemiology, machine learning, population ecology, quantitative finance, and robotics. The coverage is comprehensive, ranging from the underlying theory to computational implementation, methodology, and diverse applications in various areas of science. This is achieved by describing SMC algorithms as particular cases of a general framework, which involves concepts such as Feynman-Kac distributions, and tools such as importance sampling and resampling. This general framework is used consistently throughout the book. Extensive coverage is provided on sequential learning (filtering, smoothing) of state-space (hidden Markov) models, as this remains an important application of SMC methods. More recent applications, such as parameter estimation of these models (through e.g. particle Markov chain Monte Carlo techniques) and the simulation of challenging probability distributions (in e.g. Bayesian inference or rare-event problems), are also discussed. The book may be used either as a graduate text on Sequential Monte Carlo methods and state-space modeling, or as a general reference work on the area. Each chapter includes a set of exercises for self-study, a comprehensive bibliography, and a “Python corner,” which discusses the practical implementation of the methods covered. In addition, the book comes with an open source Python library, which implements all the algorithms described in the book, and contains all the programs that were used to perform the numerical experiments.
Author | : Dan Simon |
Publisher | : John Wiley & Sons |
Total Pages | : 554 |
Release | : 2006-06-19 |
Genre | : Technology & Engineering |
ISBN | : 0470045337 |
A bottom-up approach that enables readers to master and apply the latest techniques in state estimation This book offers the best mathematical approaches to estimating the state of a general system. The author presents state estimation theory clearly and rigorously, providing the right amount of advanced material, recent research results, and references to enable the reader to apply state estimation techniques confidently across a variety of fields in science and engineering. While there are other textbooks that treat state estimation, this one offers special features and a unique perspective and pedagogical approach that speed learning: * Straightforward, bottom-up approach begins with basic concepts and then builds step by step to more advanced topics for a clear understanding of state estimation * Simple examples and problems that require only paper and pen to solve lead to an intuitive understanding of how theory works in practice * MATLAB(r)-based source code that corresponds to examples in the book, available on the author's Web site, enables readers to recreate results and experiment with other simulation setups and parameters Armed with a solid foundation in the basics, readers are presented with a careful treatment of advanced topics, including unscented filtering, high order nonlinear filtering, particle filtering, constrained state estimation, reduced order filtering, robust Kalman filtering, and mixed Kalman/H? filtering. Problems at the end of each chapter include both written exercises and computer exercises. Written exercises focus on improving the reader's understanding of theory and key concepts, whereas computer exercises help readers apply theory to problems similar to ones they are likely to encounter in industry. With its expert blend of theory and practice, coupled with its presentation of recent research results, Optimal State Estimation is strongly recommended for undergraduate and graduate-level courses in optimal control and state estimation theory. It also serves as a reference for engineers and science professionals across a wide array of industries.