Beginner's Guide to Zero-inflated Models with R
Author | : Alain F. Zuur |
Publisher | : |
Total Pages | : 414 |
Release | : 2016 |
Genre | : Ecology |
ISBN | : 9780957174184 |
Download Beginners Guide To Zero Inflated Models With R full books in PDF, epub, and Kindle. Read online free Beginners Guide To Zero Inflated Models With R ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Alain F. Zuur |
Publisher | : |
Total Pages | : 414 |
Release | : 2016 |
Genre | : Ecology |
ISBN | : 9780957174184 |
Author | : Alain F. Zuur |
Publisher | : |
Total Pages | : 362 |
Release | : 2017 |
Genre | : Ecology |
ISBN | : 9780957174191 |
Author | : Alain F. Zuur |
Publisher | : |
Total Pages | : 256 |
Release | : 2013 |
Genre | : Ecology |
ISBN | : 9780957174139 |
This book presents Generalized Linear Models (GLM) and Generalized Linear Mixed Models (GLMM) based on both frequency-based and Bayesian concepts.
Author | : Daniel Navarro |
Publisher | : Lulu.com |
Total Pages | : 617 |
Release | : 2013-01-13 |
Genre | : Computers |
ISBN | : 1326189727 |
"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com
Author | : Simon Wood |
Publisher | : CRC Press |
Total Pages | : 412 |
Release | : 2006-02-27 |
Genre | : Mathematics |
ISBN | : 1584884746 |
Now in widespread use, generalized additive models (GAMs) have evolved into a standard statistical methodology of considerable flexibility. While Hastie and Tibshirani's outstanding 1990 research monograph on GAMs is largely responsible for this, there has been a long-standing need for an accessible introductory treatment of the subject that also emphasizes recent penalized regression spline approaches to GAMs and the mixed model extensions of these models. Generalized Additive Models: An Introduction with R imparts a thorough understanding of the theory and practical applications of GAMs and related advanced models, enabling informed use of these very flexible tools. The author bases his approach on a framework of penalized regression splines, and builds a well-grounded foundation through motivating chapters on linear and generalized linear models. While firmly focused on the practical aspects of GAMs, discussions include fairly full explanations of the theory underlying the methods. Use of the freely available R software helps explain the theory and illustrates the practicalities of linear, generalized linear, and generalized additive models, as well as their mixed effect extensions. The treatment is rich with practical examples, and it includes an entire chapter on the analysis of real data sets using R and the author's add-on package mgcv. Each chapter includes exercises, for which complete solutions are provided in an appendix. Concise, comprehensive, and essentially self-contained, Generalized Additive Models: An Introduction with R prepares readers with the practical skills and the theoretical background needed to use and understand GAMs and to move on to other GAM-related methods and models, such as SS-ANOVA, P-splines, backfitting and Bayesian approaches to smoothing and additive modelling.
Author | : Alain F. Zuur |
Publisher | : |
Total Pages | : 188 |
Release | : 2012 |
Genre | : Ecology |
ISBN | : 9780957174122 |
A Beginner's Guide to Generalized Additive Models with R is exclusively available from: www.highstat.com
Author | : Christoph Molnar |
Publisher | : Lulu.com |
Total Pages | : 320 |
Release | : 2020 |
Genre | : Computers |
ISBN | : 0244768528 |
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Author | : John P. Hoffmann |
Publisher | : Univ of California Press |
Total Pages | : 428 |
Release | : 2016-08-16 |
Genre | : Mathematics |
ISBN | : 0520289293 |
Social science and behavioral science students and researchers are often confronted with data that are categorical, count a phenomenon, or have been collected over time. Sociologists examining the likelihood of interracial marriage, political scientists studying voting behavior, criminologists counting the number of offenses people commit, health scientists studying the number of suicides across neighborhoods, and psychologists modeling mental health treatment success are all interested in outcomes that are not continuous. Instead, they must measure and analyze these events and phenomena in a discrete manner. This book provides an introduction and overview of several statistical models designed for these types of outcomes—all presented with the assumption that the reader has only a good working knowledge of elementary algebra and has taken introductory statistics and linear regression analysis. Numerous examples from the social sciences demonstrate the practical applications of these models. The chapters address logistic and probit models, including those designed for ordinal and nominal variables, regular and zero-inflated Poisson and negative binomial models, event history models, models for longitudinal data, multilevel models, and data reduction techniques such as principal components and factor analysis. Each chapter discusses how to utilize the models and test their assumptions with the statistical software Stata, and also includes exercise sets so readers can practice using these techniques. Appendices show how to estimate the models in SAS, SPSS, and R; provide a review of regression assumptions using simulations; and discuss missing data. A companion website includes downloadable versions of all the data sets used in the book.
Author | : Richard McElreath |
Publisher | : CRC Press |
Total Pages | : 488 |
Release | : 2018-01-03 |
Genre | : Mathematics |
ISBN | : 1315362619 |
Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.
Author | : Xing Liu |
Publisher | : SAGE Publications |
Total Pages | : 745 |
Release | : 2022-02-24 |
Genre | : Political Science |
ISBN | : 154432491X |
Categorical Data Analysis and Multilevel Modeling Using R provides a practical guide to regression techniques for analyzing binary, ordinal, nominal, and count response variables using the R software. Author Xing Liu offers a unified framework for both single-level and multilevel modeling of categorical and count response variables with both frequentist and Bayesian approaches. Each chapter demonstrates how to conduct the analysis using R, how to interpret the models, and how to present the results for publication. A companion website for this book contains datasets and R commands used in the book for students, and solutions for the end-of-chapter exercises on the instructor site.