Tensor Regression

Tensor Regression
Author: Jiani Liu
Publisher:
Total Pages:
Release: 2021-09-27
Genre:
ISBN: 9781680838862

Tensor Regression is the first thorough overview of the fundamentals, motivations, popular algorithms, strategies for efficient implementation, related applications, available datasets, and software resources for tensor-based regression analysis.

Tensor Computation for Data Analysis

Tensor Computation for Data Analysis
Author: Yipeng Liu
Publisher: Springer Nature
Total Pages: 347
Release: 2021-08-31
Genre: Technology & Engineering
ISBN: 3030743861

Tensor is a natural representation for multi-dimensional data, and tensor computation can avoid possible multi-linear data structure loss in classical matrix computation-based data analysis. This book is intended to provide non-specialists an overall understanding of tensor computation and its applications in data analysis, and benefits researchers, engineers, and students with theoretical, computational, technical and experimental details. It presents a systematic and up-to-date overview of tensor decompositions from the engineer's point of view, and comprehensive coverage of tensor computation based data analysis techniques. In addition, some practical examples in machine learning, signal processing, data mining, computer vision, remote sensing, and biomedical engineering are also presented for easy understanding and implementation. These data analysis techniques may be further applied in other applications on neuroscience, communication, psychometrics, chemometrics, biometrics, quantum physics, quantum chemistry, etc. The discussion begins with basic coverage of notations, preliminary operations in tensor computations, main tensor decompositions and their properties. Based on them, a series of tensor-based data analysis techniques are presented as the tensor extensions of their classical matrix counterparts, including tensor dictionary learning, low rank tensor recovery, tensor completion, coupled tensor analysis, robust principal tensor component analysis, tensor regression, logistical tensor regression, support tensor machine, multilinear discriminate analysis, tensor subspace clustering, tensor-based deep learning, tensor graphical model and tensor sketch. The discussion also includes a number of typical applications with experimental results, such as image reconstruction, image enhancement, data fusion, signal recovery, recommendation system, knowledge graph acquisition, traffic flow prediction, link prediction, environmental prediction, weather forecasting, background extraction, human pose estimation, cognitive state classification from fMRI, infrared small target detection, heterogeneous information networks clustering, multi-view image clustering, and deep neural network compression.

Information Processing and Management of Uncertainty in Knowledge-Based Systems

Information Processing and Management of Uncertainty in Knowledge-Based Systems
Author: Marie-Jeanne Lesot
Publisher: Springer Nature
Total Pages: 839
Release: 2020-06-05
Genre: Computers
ISBN: 3030501531

This three volume set (CCIS 1237-1239) constitutes the proceedings of the 18th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2020, in June 2020. The conference was scheduled to take place in Lisbon, Portugal, at University of Lisbon, but due to COVID-19 pandemic it was held virtually. The 173 papers were carefully reviewed and selected from 213 submissions. The papers are organized in topical sections: homage to Enrique Ruspini; invited talks; foundations and mathematics; decision making, preferences and votes; optimization and uncertainty; games; real world applications; knowledge processing and creation; machine learning I; machine learning II; XAI; image processing; temporal data processing; text analysis and processing; fuzzy interval analysis; theoretical and applied aspects of imprecise probabilities; similarities in artificial intelligence; belief function theory and its applications; aggregation: theory and practice; aggregation: pre-aggregation functions and other generalizations of monotonicity; aggregation: aggregation of different data structures; fuzzy methods in data mining and knowledge discovery; computational intelligence for logistics and transportation problems; fuzzy implication functions; soft methods in statistics and data analysis; image understanding and explainable AI; fuzzy and generalized quantifier theory; mathematical methods towards dealing with uncertainty in applied sciences; statistical image processing and analysis, with applications in neuroimaging; interval uncertainty; discrete models and computational intelligence; current techniques to model, process and describe time series; mathematical fuzzy logic and graded reasoning models; formal concept analysis, rough sets, general operators and related topics; computational intelligence methods in information modelling, representation and processing.

Signal Processing and Machine Learning Theory

Signal Processing and Machine Learning Theory
Author: Paulo S.R. Diniz
Publisher: Elsevier
Total Pages: 1236
Release: 2023-07-10
Genre: Technology & Engineering
ISBN: 032397225X

Signal Processing and Machine Learning Theory, authored by world-leading experts, reviews the principles, methods and techniques of essential and advanced signal processing theory. These theories and tools are the driving engines of many current and emerging research topics and technologies, such as machine learning, autonomous vehicles, the internet of things, future wireless communications, medical imaging, etc. - Provides quick tutorial reviews of important and emerging topics of research in signal processing-based tools - Presents core principles in signal processing theory and shows their applications - Discusses some emerging signal processing tools applied in machine learning methods - References content on core principles, technologies, algorithms and applications - Includes references to journal articles and other literature on which to build further, more specific, and detailed knowledge

Tensor Spaces and Numerical Tensor Calculus

Tensor Spaces and Numerical Tensor Calculus
Author: Wolfgang Hackbusch
Publisher: Springer Nature
Total Pages: 622
Release: 2019-12-16
Genre: Mathematics
ISBN: 3030355543

Special numerical techniques are already needed to deal with n × n matrices for large n. Tensor data are of size n × n ×...× n=nd, where nd exceeds the computer memory by far. They appear for problems of high spatial dimensions. Since standard methods fail, a particular tensor calculus is needed to treat such problems. This monograph describes the methods by which tensors can be practically treated and shows how numerical operations can be performed. Applications include problems from quantum chemistry, approximation of multivariate functions, solution of partial differential equations, for example with stochastic coefficients, and more. In addition to containing corrections of the unavoidable misprints, this revised second edition includes new parts ranging from single additional statements to new subchapters. The book is mainly addressed to numerical mathematicians and researchers working with high-dimensional data. It also touches problems related to Geometric Algebra.

Nonnegative Matrix and Tensor Factorizations

Nonnegative Matrix and Tensor Factorizations
Author: Andrzej Cichocki
Publisher: John Wiley & Sons
Total Pages: 500
Release: 2009-07-10
Genre: Science
ISBN: 9780470747285

This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF’s various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and data analysis, having garnered interest due to their capability to provide new insights and relevant information about the complex latent relationships in experimental data sets. It is suggested that NMF can provide meaningful components with physical interpretations; for example, in bioinformatics, NMF and its extensions have been successfully applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining. As such, the authors focus on the algorithms that are most useful in practice, looking at the fastest, most robust, and suitable for large-scale models. Key features: Acts as a single source reference guide to NMF, collating information that is widely dispersed in current literature, including the authors’ own recently developed techniques in the subject area. Uses generalized cost functions such as Bregman, Alpha and Beta divergences, to present practical implementations of several types of robust algorithms, in particular Multiplicative, Alternating Least Squares, Projected Gradient and Quasi Newton algorithms. Provides a comparative analysis of the different methods in order to identify approximation error and complexity. Includes pseudo codes and optimized MATLAB source codes for almost all algorithms presented in the book. The increasing interest in nonnegative matrix and tensor factorizations, as well as decompositions and sparse representation of data, will ensure that this book is essential reading for engineers, scientists, researchers, industry practitioners and graduate students across signal and image processing; neuroscience; data mining and data analysis; computer science; bioinformatics; speech processing; biomedical engineering; and multimedia.

New Frontiers in Bayesian Statistics

New Frontiers in Bayesian Statistics
Author: Raffaele Argiento
Publisher: Springer Nature
Total Pages: 122
Release: 2022-11-26
Genre: Mathematics
ISBN: 303116427X

This book presents a selection of peer-reviewed contributions to the fifth Bayesian Young Statisticians Meeting, BaYSM 2021, held virtually due to the COVID-19 pandemic on 1-3 September 2021. Despite all the challenges of an online conference, the meeting provided a valuable opportunity for early career researchers, including MSc students, PhD students, and postdocs to connect with the broader Bayesian community. The proceedings highlight many different topics in Bayesian statistics, presenting promising methodological approaches to address important challenges in a variety of applications. The book is intended for a broad audience of people interested in statistics, and provides a series of stimulating contributions on theoretical, methodological, and computational aspects of Bayesian statistics.

Metalearning

Metalearning
Author: Pavel Brazdil
Publisher: Springer Science & Business Media
Total Pages: 182
Release: 2008-11-26
Genre: Computers
ISBN: 3540732624

Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions, a methodology is still needed to guide the search for the most appropriate model in an efficient way. Metalearning provides one such methodology that allows systems to become more effective through experience. This book discusses several approaches to obtaining knowledge concerning the performance of machine learning and data mining algorithms. It shows how this knowledge can be reused to select, combine, compose and adapt both algorithms and models to yield faster, more effective solutions to data mining problems. It can thus help developers improve their algorithms and also develop learning systems that can improve themselves. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining and artificial intelligence.

Unsupervised Feature Extraction Applied to Bioinformatics

Unsupervised Feature Extraction Applied to Bioinformatics
Author: Y-h. Taguchi
Publisher: Springer Nature
Total Pages: 329
Release: 2019-08-23
Genre: Technology & Engineering
ISBN: 3030224562

This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. Allows readers to analyze data sets with small samples and many features; Provides a fast algorithm, based upon linear algebra, to analyze big data; Includes several applications to multi-view data analyses, with a focus on bioinformatics.

Handbook of Spatial Epidemiology

Handbook of Spatial Epidemiology
Author: Andrew B. Lawson
Publisher: CRC Press
Total Pages: 704
Release: 2016-04-06
Genre: Mathematics
ISBN: 148225302X

Handbook of Spatial Epidemiology explains how to model epidemiological problems and improve inference about disease etiology from a geographical perspective. Top epidemiologists, geographers, and statisticians share interdisciplinary viewpoints on analyzing spatial data and space-time variations in disease incidences. These analyses can provide imp