Basic Atomic Interactions of Accelerated Heavy Ions in Matter

Basic Atomic Interactions of Accelerated Heavy Ions in Matter
Author: Inga Tolstikhina
Publisher: Springer
Total Pages: 228
Release: 2018-02-28
Genre: Science
ISBN: 3319749927

This book provides an overview of the recent experimental and theoretical results on interactions of heavy ions with gaseous, solid and plasma targets from the perspective of atomic physics. The topics discussed comprise stopping power, multiple-electron loss and capture processes, equilibrium and non-equilibrium charge-state fractions in penetration of fast ion beams through matter including relativistic domain. It also addresses mean charge-states and equilibrium target thickness in ion-beam penetrations, isotope effects in low-energy electron capture, lifetimes of heavy ion beams, semi-empirical formulae for effective cross sections. The book is intended for researchers and graduate students working in atomic, plasma and accelerator physics.

Ion-Solid Interactions

Ion-Solid Interactions
Author: Michael Nastasi
Publisher: Cambridge University Press
Total Pages: 572
Release: 1996-03-29
Genre: Science
ISBN: 052137376X

Comprehensive guide to an important materials science technique for students and researchers.

Handbook of Spallation Research

Handbook of Spallation Research
Author: Detlef Filges
Publisher: Wiley-VCH
Total Pages: 787
Release: 2010-02-01
Genre: Science
ISBN: 9783527407149

This detailed and comprehensive reference to spallation -- from the foundations to the latest applications is the only work of its kind and is written by two internationally renowned researchers. Clearly divided into three parts, it begins with the basic principles, while the second part describes the proton-nucleus and proton-matter experiments so-called thin and thick target experiments in terms of secondary particle production as hadrons, pions, muons, photons, electrons, light and intermediate masses, isotope production, heating and energy deposition and materials damage. Many of the experiments are associated with studies, investigations and the construction of spallation neutron sources since 1975 with emphasis on the most recent developments. The final part on technology and applications describes the various engineering problems associated with high intensity neutron spallation sources, ATW's, the needed accelerator systems, material and neutron issues, and high energy neutron source shielding aspects. A must-have for engineers and physicists working in or entering this field.

Radiochemistry and Nuclear Chemistry

Radiochemistry and Nuclear Chemistry
Author: Gregory Choppin
Publisher: Butterworth-Heinemann
Total Pages: 726
Release: 2002
Genre: Science
ISBN: 0750674636

Origin of Nuclear Science; Nuclei, Isotopes and Isotope Separation; Nuclear Mass and Stability; Unstable Nuclei and Radioactive Decay; Radionuclides in Nature; Absorption of Nuclear Radiation; Radiation Effects on Matter; Detection and Measurement Techniques; Uses of Radioactive Tracers; Cosmic Radiation and Elementary Particles; Nuclear Structure; Energetics of Nuclear Reactions; Particle Accelerators; Mechanics and Models of Nuclear Reactions; Production of Radionuclides; The Transuranium Elements; Thermonuclear Reactions: the Beginning and the Future; Radiation Biology and Radiation Protection; Principles of Nuclear Power; Nuclear Power Reactors; Nuclear Fuel Cycle; Behavior of Radionuclides in the Environment; Appendices; Solvent Extraction Separations; Answers to Exercises; Isotope Chart; Periodic Table of the Elements; Quantities and Units; Fundamental Constants; Energy Conversion Factors; Element and Nuclide Index; Subject Index.

Radiation Detection for Nuclear Physics

Radiation Detection for Nuclear Physics
Author: David Jenkins
Publisher: Programme: Iop Expanding Physi
Total Pages:
Release: 2020-11-18
Genre: Science
ISBN: 9780750314299

Radiation detection is key to experimental nuclear physics as well as underpinning a wide range of applications in nuclear decommissioning, homeland security and medical imaging. This book presents the state-of-the-art in radiation detection of light and heavy ions, beta particles, gamma rays and neutrons. The underpinning physics of different detector technologies is presented, and their performance is compared and contrasted. Detector technology likely to be encountered in contemporary international laboratories is also emphasized. There is a strong focus on experimental design and mapping detector technology to the needs of a particular measurement problem. This book will be invaluable to PhD students in experimental nuclear physics and nuclear technology, as well as undergraduate students encountering projects based on radiation detection for the first time. Key Features Provides clear, concise descriptions of key detection techniques Describes detector types with "telescopic depth", so readers can go as deep as they wish Covers real-world applications including short case studies in industry

ERDA Research Abstracts

ERDA Research Abstracts
Author: United States. Energy Research and Development Administration
Publisher:
Total Pages: 1040
Release: 1976
Genre: Power resources
ISBN:

The Composition of Matter

The Composition of Matter
Author: R. von Steiger
Publisher: Springer Science & Business Media
Total Pages: 512
Release: 2007-12-14
Genre: Science
ISBN: 0387741836

This volume consists of papers developed from a joint ACE/ISSI symposium at the occasion of the eightieth birthday of Johannes Geiss. The symposium explored insights into the composition of solar-system and galactic matter that have been brought about by recent space missions, ground-based studies, and theoretical advances. Coverage includes linking primordial to solar composition, planetary samples, solar sources and fractionation processes, and interstellar gas and Cosmic rays.

Frontiers in High Energy Density Physics

Frontiers in High Energy Density Physics
Author: National Research Council
Publisher: National Academies Press
Total Pages: 177
Release: 2003-05-11
Genre: Science
ISBN: 030908637X

Recent scientific and technical advances have made it possible to create matter in the laboratory under conditions relevant to astrophysical systems such as supernovae and black holes. These advances will also benefit inertial confinement fusion research and the nation's nuclear weapon's program. The report describes the major research facilities on which such high energy density conditions can be achieved and lists a number of key scientific questions about high energy density physics that can be addressed by this research. Several recommendations are presented that would facilitate the development of a comprehensive strategy for realizing these research opportunities.