Neurological Rehabilitation

Neurological Rehabilitation
Author: Audrey N. Kusiak
Publisher: Elsevier Inc. Chapters
Total Pages: 79
Release: 2013-01-10
Genre: Medical
ISBN: 0128077921

Once thought to be rigidly wired, the spinal cord now is understood to display significant plastic properties, which are manifest as both physiological and structural alterations in response to changes in patterns of use, disuse, and damage. Activity-dependent increases in responsiveness of spinal cord circuits are now thought to underlie or contribute importantly to the hyperalgesia that often follows neurological injuries, the physical therapy-induced improvement in walking and running seen in patients with stroke and spinal cord injury, skill acquisition in normal children, and several other phenomena. Physiological mechanisms underlying spinal cord plasticity include denervation supersensitivity, long-term potentiation, long-term depression, and habituation. Anatomical plasticity seen in the spinal cord after partial injuries includes collateral sprouting of spared axons in response to injury of neighboring axons, and dendritic remodeling in response to loss of regionally segregated synaptic inputs. A form of neuroplasticity that is seen in the peripheral nerves and in the spinal cord of some cold-blooded animals, but not in the central nervous system of birds or mammals, is axon regeneration. It is often difficult to distinguish between regeneration of injured axons and collateral sprouting of neighboring uninjured axons, but the distinction could be very important, especially in the case of complete spinal cord injuries. Several instances of treatment-induced axonal changes that were originally thought to indicate regeneration have turned out to be collateral sprouting. There is reason to suspect that the molecular mechanisms that underlie these two phenomena are different, and, if so, therapeutic approaches to enhancing them may also prove to be very different.

Axonal Regeneration Following Complete Spinal Cord Transection in NgR and NgR/Nogo/MAG Knockout Mice

Axonal Regeneration Following Complete Spinal Cord Transection in NgR and NgR/Nogo/MAG Knockout Mice
Author: Renee Chow
Publisher:
Total Pages: 30
Release: 2008
Genre:
ISBN:

Functional recovery following central nervous system (CNS) trauma is often restricted by stagnant growth of severed axons. A number of studies indicate that the presence of endogenous inhibitory molecules from astroglial scarring and myelin debris contribute to the diminished regenerative capacity of CNS axons. To assess the roles of two specific myelin-derived inhibitors - Nogo and myelin-associated glycoprotein (MAG) - and their common receptor, NgR, in the regrowth of mature axons, we evaluated complete spinal transection models of single NgR and triple NgR/Nogo/MAG knockout (KO) mice. Previous studies of single NgR mutants using a dorsal hemisection model have shown that despite possible displays of improved behavioral recovery, there is no detectable regeneration of the corticospinal tract (CST). We focused our analysis on serotonergic (5-HT) fibers because previous studies suggest that these axons have a high intrinsic regenerative capability. Our results indicate that though there is an increase in 5-HT fiber sprouting within the injury site of single NgR KO mice, there is no significant enhancement in 5-HT fiber regeneration beyond the injury site in either NgR single mutants or NgR/Nogo/MAG triple mutant mice. These data suggest that disrupting two major myelin-derived axon growth inhibitors together with their common receptor NgR remains insufficient to elicit enhanced axon regeneration in the adult mammalian CNS. This calls for a re-examination of this molecular pathway for therapeutic development to treat spinal cord injury.

Axon Regeneration

Axon Regeneration
Author: Ava J. Udvadia
Publisher: Springer Nature
Total Pages: 449
Release: 2023-03-07
Genre: Medical
ISBN: 1071630121

This volume covers a wide range of approaches utilized to decipher cellular and molecular mechanisms that contribute to successful nerve regeneration leading to functional recovery. Chapters detail a variety of models utilizing both in vivo and in vitro approaches, physical injury models, methods for the isolation/analysis of various macromolecules, live and fixed imaging of regenerating axons, and for quantifying behavioral endpoints enable measurements of regenerative success. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and methods, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Axon Regeneration: Methods and Protocols aims to be comprehensive guide for researchers.

Reorganization of a Spinal Motoneuron Nucleus following Autologous Nerve Graft in the Rat

Reorganization of a Spinal Motoneuron Nucleus following Autologous Nerve Graft in the Rat
Author: Dieter M. Weinert
Publisher: BoD – Books on Demand
Total Pages: 186
Release: 2016-05-07
Genre: Medical
ISBN: 3839167779

Autologous nerve grafts are steadily regarded as the method of choice for bridging the nerve gaps resulting after peripheral nerve lesions with substance defects. Microsurgical techniques and the perineurial suture of corresponding fascicles have improved the functional results following peripheral nerve graft. However, regeneration success is often disappointing, despite the most thorough technique and expertise. The loss of spinal motoneurons associated with a nerve lesion and the growth of axon sprouts in inadequate endoneurial sheaths were held responsible as the reason for the lowered muscular strength, limited movement coordination and fine motor skills, poor differentiation and localization of sensory stimuli and for the lack of tactile gnosis. In this experimental study, it is assumed that the central effects at the level of the spinal motoneuron nuclei show an image of the peripheral misinnervation in topographical-morphological terms, and can supply an explanatory model for the functional motor deficits after peripheral nerve graft. On the other hand, the plastic changes of a motor cell column in the reinnervation process influence the structural-functional relationships of the motor units in a variety of clinically relevant ways.

Axon Growth and Regeneration: Part 1

Axon Growth and Regeneration: Part 1
Author:
Publisher: Academic Press
Total Pages: 233
Release: 2012-12-31
Genre: Science
ISBN: 0123983223

Published since 1959, International Review of Neurobiology is a well-known series appealing to neuroscientists, clinicians, psychologists, physiologists, and pharmacologists. Led by an internationally renowned editorial board, this important serial publishes both eclectic volumes made up of timely reviews and thematic volumes that focus on recent progress in a specific area of neurobiology research. This volume reviews existing theories and current research surrounding Axon Growth and Regeneration. Leading authors review state-of-the-art in their field of investigation and provide their views and perspectives for future research Chapters are extensively referenced to provide readers with a comprehensive list of resources on the topics covered All chapters include comprehensive background information and are written in a clear form that is also accessible to the non-specialist