Analytic Number Theory:The Halberstam Festschrift 2

Analytic Number Theory:The Halberstam Festschrift 2
Author: Bruce C. Berndt
Publisher: Springer Science & Business Media
Total Pages: 464
Release: 1996-05-01
Genre: Mathematics
ISBN: 9780817639334

The second of two volumes presenting papers from an international conference on analytic number theory. The two volumes contain 50 papers, with an emphasis on topics such as sieves, related combinatorial aspects, multiplicative number theory, additive number theory, and Riemann zeta-function.

Automorphic Forms, Representations and $L$-Functions

Automorphic Forms, Representations and $L$-Functions
Author: Armand Borel
Publisher: American Mathematical Soc.
Total Pages: 394
Release: 1979-06-30
Genre: Mathematics
ISBN: 0821814370

Part 2 contains sections on Automorphic representations and $L$-functions, Arithmetical algebraic geometry and $L$-functions

Automorphic Forms and L-Functions for the Group GL(n,R)

Automorphic Forms and L-Functions for the Group GL(n,R)
Author: Dorian Goldfeld
Publisher: Cambridge University Press
Total Pages: 65
Release: 2006-08-03
Genre: Mathematics
ISBN: 1139456202

L-functions associated to automorphic forms encode all classical number theoretic information. They are akin to elementary particles in physics. This book provides an entirely self-contained introduction to the theory of L-functions in a style accessible to graduate students with a basic knowledge of classical analysis, complex variable theory, and algebra. Also within the volume are many new results not yet found in the literature. The exposition provides complete detailed proofs of results in an easy-to-read format using many examples and without the need to know and remember many complex definitions. The main themes of the book are first worked out for GL(2,R) and GL(3,R), and then for the general case of GL(n,R). In an appendix to the book, a set of Mathematica functions is presented, designed to allow the reader to explore the theory from a computational point of view.

Lectures on Automorphic L-functions

Lectures on Automorphic L-functions
Author: James W. Cogdell
Publisher: American Mathematical Soc.
Total Pages: 283
Release: 2009
Genre: Mathematics
ISBN: 9780821848005

This book provides a comprehensive account of the crucial role automorphic $L$-functions play in number theory and in the Langlands program, especially the Langlands functoriality conjecture. There has been a recent major development in the Langlands functoriality conjecture by the use of automorphic $L$-functions, namely, by combining converse theorems of Cogdell and Piatetski-Shapiro with the Langlands-Shahidi method. This book provides a step-by-step introduction to these developments and explains how the Langlands functoriality conjecture implies solutions to several outstanding conjectures in number theory, such as the Ramanujan conjecture, Sato-Tate conjecture, and Artin's conjecture. It would be ideal for an introductory course in the Langlands program. Titles in this series are co-published with The Fields Institute for Research in Mathematical Sciences (Toronto, Ontario, Canada). Table of Contents: James W.Cogdell, Lectures on $L$-functions, converse theorems, and functoriality for $GL_n$: Preface; Modular forms and their $L$-functions; Automorphic forms; Automorphic representations; Fourier expansions and multiplicity one theorems; Eulerian integral representations; Local $L$-functions: The non-Archimedean case; The unramified calculation; Local $L$-functions: The Archimedean case; Global $L$-functions; Converse theorems; Functoriality; Functoriality for the classical groups; Functoriality for the classical groups, II. Henry H.Kim, Automorphic $L$-functions: Introduction; Chevalley groups and their properties; Cuspidal representations; $L$-groups and automorphic $L$-functions; Induced representations; Eisenstein series and constant terms; $L$-functions in the constant terms; Meromorphic continuation of $L$-functions; Generic representations and their Whittaker models; Local coefficients and non-constant terms; Local Langlands correspondence; Local $L$-functions and functional equations; Normalization of intertwining operators; Holomorphy and bounded in vertical strips; Langlands functoriality conjecture; Converse theorem of Cogdell and Piatetski-Shapiro; Functoriality of the symmetric cube; Functoriality of the symmetric fourth; Bibliography. M.Ram Murty, Applications of symmetric power $L$-functions: Preface; The Sato-Tate conjecture; Maass wave forms; The Rankin-Selberg method; Oscillations of Fourier coefficients of cusp forms; Poincare series; Kloosterman sums and Selberg's conjecture; Refined estimates for Fourier coefficients of cusp forms; Twisting and averaging of $L$-series; The Kim-Sarnak theorem; Introduction to Artin $L$-functions; Zeros and poles of Artin $L$-functions; The Langlands-Tunnell theorem; Bibliography. This is a reprint of the 2004 original. (FIM/20.S)

Eisenstein Series and Automorphic $L$-Functions

Eisenstein Series and Automorphic $L$-Functions
Author: Freydoon Shahidi
Publisher: American Mathematical Soc.
Total Pages: 218
Release: 2010
Genre: Mathematics
ISBN: 0821849891

This book presents a treatment of the theory of $L$-functions developed by means of the theory of Eisenstein series and their Fourier coefficients, a theory which is usually referred to as the Langlands-Shahidi method. The information gathered from this method, when combined with the converse theorems of Cogdell and Piatetski-Shapiro, has been quite sufficient in establishing a number of new cases of Langlands functoriality conjecture; at present, some of these cases cannot be obtained by any other method. These results have led to far-reaching new estimates for Hecke eigenvalues of Maass forms, as well as definitive solutions to certain problems in analytic and algebraic number theory. This book gives a detailed treatment of important parts of this theory, including a rather complete proof of Casselman-Shalika's formula for unramified Whittaker functions as well as a general treatment of the theory of intertwining operators. It also covers in some detail the global aspects of the method as well as some of its applications to group representations and harmonic analysis. This book is addressed to graduate students and researchers who are interested in the Langlands program in automorphic forms and its connections with number theory.

Modular Forms and Special Cycles on Shimura Curves. (AM-161)

Modular Forms and Special Cycles on Shimura Curves. (AM-161)
Author: Stephen S. Kudla
Publisher: Princeton University Press
Total Pages: 384
Release: 2006-04-04
Genre: Mathematics
ISBN: 1400837162

Modular Forms and Special Cycles on Shimura Curves is a thorough study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface "M" attached to a Shimura curve "M" over the field of rational numbers. These generating functions are shown to be the q-expansions of modular forms and Siegel modular forms of genus two respectively, valued in the Gillet-Soulé arithmetic Chow groups of "M". The two types of generating functions are related via an arithmetic inner product formula. In addition, an analogue of the classical Siegel-Weil formula identifies the generating function for zero-cycles as the central derivative of a Siegel Eisenstein series. As an application, an arithmetic analogue of the Shimura-Waldspurger correspondence is constructed, carrying holomorphic cusp forms of weight 3/2 to classes in the Mordell-Weil group of "M". In certain cases, the nonvanishing of this correspondence is related to the central derivative of the standard L-function for a modular form of weight 2. These results depend on a novel mixture of modular forms and arithmetic geometry and should provide a paradigm for further investigations. The proofs involve a wide range of techniques, including arithmetic intersection theory, the arithmetic adjunction formula, representation densities of quadratic forms, deformation theory of p-divisible groups, p-adic uniformization, the Weil representation, the local and global theta correspondence, and the doubling integral representation of L-functions.

Introduction to Modern Number Theory

Introduction to Modern Number Theory
Author: Yu. I. Manin
Publisher: Springer Science & Business Media
Total Pages: 519
Release: 2006-03-30
Genre: Mathematics
ISBN: 3540276920

This edition has been called ‘startlingly up-to-date’, and in this corrected second printing you can be sure that it’s even more contemporaneous. It surveys from a unified point of view both the modern state and the trends of continuing development in various branches of number theory. Illuminated by elementary problems, the central ideas of modern theories are laid bare. Some topics covered include non-Abelian generalizations of class field theory, recursive computability and Diophantine equations, zeta- and L-functions. This substantially revised and expanded new edition contains several new sections, such as Wiles' proof of Fermat's Last Theorem, and relevant techniques coming from a synthesis of various theories.