Automorphic Forms And The Picard Number Of An Elliptic Surface
Download Automorphic Forms And The Picard Number Of An Elliptic Surface full books in PDF, epub, and Kindle. Read online free Automorphic Forms And The Picard Number Of An Elliptic Surface ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Peter F. Stiller |
Publisher | : Springer Science & Business Media |
Total Pages | : 201 |
Release | : 2013-04-17 |
Genre | : Technology & Engineering |
ISBN | : 3322907082 |
In studying an algebraic surface E, which we assume is non-singular and projective over the field of complex numbers t, it is natural to study the curves on this surface. In order to do this one introduces various equivalence relations on the group of divisors (cycles of codimension one). One such relation is algebraic equivalence and we denote by NS(E) the group of divisors modulo algebraic equivalence which is called the N~ron-Severi group of the surface E. This is known to be a finitely generated abelian group which can be regarded naturally as a subgroup of 2 H (E,Z). The rank of NS(E) will be denoted p and is known as the Picard number of E. 2 Every divisor determines a cohomology class in H(E,E) which is of I type (1,1), that is to say a class in H(E,9!) which can be viewed as a 2 subspace of H(E,E) via the Hodge decomposition. The Hodge Conjecture asserts in general that every rational cohomology class of type (p,p) is algebraic. In our case this is the Lefschetz Theorem on (I,l)-classes: Every cohomology class 2 2 is the class associated to some divisor. Here we are writing H (E,Z) for 2 its image under the natural mapping into H (E,t). Thus NS(E) modulo 2 torsion is Hl(E,n!) n H(E,Z) and th 1 b i f h -~ p measures e a ge ra c part 0 t e cohomology.
Author | : Peter Stiller |
Publisher | : American Mathematical Soc. |
Total Pages | : 123 |
Release | : 1984 |
Genre | : Mathematics |
ISBN | : 0821823000 |
In this paper we explore a relationship that exists between the classical cusp form for subgroups of finite index in [italic]SL2([double-struck capital]Z) and certain differential equations, and we develop a connection between the equation's monodromy representation and the special values in the critical strip of the Dirichlet series associated to the cusp form.
Author | : Friedrich Hirzebruch |
Publisher | : Springer Science & Business Media |
Total Pages | : 216 |
Release | : 2013-06-29 |
Genre | : Technology & Engineering |
ISBN | : 3663107264 |
This book provides a comprehensive introduction to the theory of elliptic genera due to Ochanine, Landweber, Stong, and others. The theory describes a new cobordism invariant for manifolds in terms of modular forms. The book evolved from notes of a course given at the University of Bonn. After providing some background material elliptic genera are constructed, including the classical genera signature and the index of the Dirac operator as special cases. Various properties of elliptic genera are discussed, especially their behaviour in fibre bundles and rigidity for group actions. For stably almost complex manifolds the theory is extended to elliptic genera of higher level. The text is in most parts self-contained. The results are illustrated by explicit examples and by comparison with well-known theorems. The relevant aspects of the theory of modular forms are derived in a seperate appendix, providing also a useful reference for mathematicians working in this field.
Author | : Noriko Yui |
Publisher | : American Mathematical Soc. |
Total Pages | : 385 |
Release | : 2003 |
Genre | : Mathematics |
ISBN | : 0821833553 |
The idea of mirror symmetry originated in physics, but in recent years, the field of mirror symmetry has exploded onto the mathematical scene. It has inspired many new developments in algebraic and arithmetic geometry, toric geometry, the theory of Riemann surfaces, and infinite-dimensional Lie algebras among others. The developments in physics stimulated the interest of mathematicians in Calabi-Yau varieties. This led to the realization that the time is ripe for mathematicians, armed with many concrete examples and alerted by the mirror symmetry phenomenon, to focus on Calabi-Yau varieties and to test for these special varieties some of the great outstanding conjectures, e.g., the modularity conjecture for Calabi-Yau threefolds defined over the rationals, the Bloch-Beilinson conjectures, regulator maps of higher algebraic cycles, Picard-Fuchs differential equations, GKZ hypergeometric systems, and others. The articles in this volume report on current developments. The papers are divided roughly into two categories: geometric methods and arithmetic methods. One of the significant outcomes of the workshop is that we are finally beginning to understand the mirror symmetry phenomenon from the arithmetic point of view, namely, in terms of zeta-functions and L-series of mirror pairs of Calabi-Yau threefolds. The book is suitable for researchers interested in mirror symmetry and string theory.
Author | : Noriko Yui, Helena Verrill, and Charles F. Doran |
Publisher | : American Mathematical Soc. |
Total Pages | : 324 |
Release | : |
Genre | : Duality (Mathematics) |
ISBN | : 9780821871577 |
"This book is a testimony to the BIRS Workshop, and it covers a wide range of topics at the interface of number theory and string theory, with special emphasis on modular forms and string duality. They include the recent advances as well as introductory expositions on various aspects of modular forms, motives, differential equations, conformal field theory, topological strings and Gromov-Witten invariants, mirror symmetry, and homological mirror symmetry. The contributions are roughly divided into three categories: arithmetic and modular forms, geometric and differential equations, and physics and string theory. The book is suitable for researchers working at the interface of number theory and string theory."--BOOK JACKET.
Author | : Alan Adolphson |
Publisher | : American Mathematical Soc. |
Total Pages | : 254 |
Release | : 1992 |
Genre | : Mathematics |
ISBN | : 0821851454 |
Two meetings of the AMS in the autumn of 1989 - one at the Stevens Institute of Technology and the other at Ball State University - included Special Sessions on the role of p-adic methods in number theory and algebraic geometry. This volume grew out of these Special Sessions. Drawn from a wide area of mathematics, the articles presented here provide an excellent sampling of the broad range of trends and applications in p-adic methods.
Author | : Henri Darmon |
Publisher | : American Mathematical Soc. |
Total Pages | : 146 |
Release | : 2004 |
Genre | : Mathematics |
ISBN | : 0821828681 |
The book surveys some recent developments in the arithmetic of modular elliptic curves. It places a special emphasis on the construction of rational points on elliptic curves, the Birch and Swinnerton-Dyer conjecture, and the crucial role played by modularity in shedding light on these two closely related issues. The main theme of the book is the theory of complex multiplication, Heegner points, and some conjectural variants. The first three chapters introduce the background and prerequisites: elliptic curves, modular forms and the Shimura-Taniyama-Weil conjecture, complex multiplication and the Heegner point construction. The next three chapters introduce variants of modular parametrizations in which modular curves are replaced by Shimura curves attached to certain indefinite quaternion algebras. The main new contributions are found in Chapters 7-9, which survey the author's attempts to extend the theory of Heegner points and complex multiplication to situations where the base field is not a CM field. Chapter 10 explains the proof of Kolyvagin's theorem, which relates Heegner points to the arithmetic of elliptic curves and leads to the best evidence so far for the Birch and Swinnerton-Dyer conjecture.
Author | : Hirotaka Fujimoto |
Publisher | : Springer Science & Business Media |
Total Pages | : 222 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 332280271X |
This book presents in a systematic and almost self-contained way the striking analogy between classical function theory, in particular the value distribution theory of holomorphic curves in projective space, on the one hand, and important and beautiful properties of the Gauss map of minimal surfaces on the other hand. Both theories are developed in the text, including many results of recent research. The relations and analogies between them become completely clear. The book is written for interested graduate students and mathematicians, who want to become more familiar with this modern development in the two classical areas of mathematics, but also for those, who intend to do further research on minimal surfaces.
Author | : Bruce Hunt |
Publisher | : Springer Nature |
Total Pages | : 622 |
Release | : 2021-09-04 |
Genre | : Mathematics |
ISBN | : 3030698041 |
What do the classification of algebraic surfaces, Weyl's dimension formula and maximal orders in central simple algebras have in common? All are related to a type of manifold called locally mixed symmetric spaces in this book. The presentation emphasizes geometric concepts and relations and gives each reader the "roter Faden", starting from the basics and proceeding towards quite advanced topics which lie at the intersection of differential and algebraic geometry, algebra and topology. Avoiding technicalities and assuming only a working knowledge of real Lie groups, the text provides a wealth of examples of symmetric spaces. The last two chapters deal with one particular case (Kuga fiber spaces) and a generalization (elliptic surfaces), both of which require some knowledge of algebraic geometry. Of interest to topologists, differential or algebraic geometers working in areas related to arithmetic groups, the book also offers an introduction to the ideas for non-experts.
Author | : Rolf-Peter Holzapfel |
Publisher | : Springer Science & Business Media |
Total Pages | : 428 |
Release | : 2013-04-17 |
Genre | : Technology & Engineering |
ISBN | : 3322901696 |
Bei höherdimensionalen komplexen Mannigfaltigkeiten stellt die Riemann-Roch-Theorie die grundlegende Verbindung von analytischen bzw. algebraischen zu topologischen Eigenschaften her. Dieses Buch befaßt sich mit Mannigfaltigkeiten der komplexen Dimension 2, d. h. mit komplexen Flächen. Hauptziel der Monographie ist es, neue rationale diskrete Invarianten (Höhen) in die Theorie komplexer Flächen explizit einzuführen und ihre Anwendbarkeit auf konkrete aktuelle Probleme darzustellen.Als erste unmittelbare Anwendung erhält man explizit und ganz allgemein Formeln vom Hurwitz-Typ endlicher Flächenüberlagerungen für die vier klassischen Invarianten, die auf andere Weise bisher nur in Spezialfällen zugänglich waren. Ein weiteres Anwendungsgebiet ist die Theorie der Picardschen Modulflächen: Neue Resultate werden beschrieben. Letztendlich kann im letzten Kapitel eine Ergänzung des bekannten Satzes von Bogomolov-Miyaoka-Yau mit Hilfe der Höhentheorie gezeigt werden. The monograph presents basically an arithmetic theory of orbital surfaces with cusp singularities. As main invariants orbital hights are introduced, not only for the surfaces but also for the components of orbital cycles. These invariants are rational numbers with nice functorial properties allowing precise formulas of Hurwitz type and a fine intersection theory for orbital cycles. For ball quotient surfaces they appear as volumes of fundamental domains. In the special case of Picard modular surfaces they are discovered by special value of Dirichlet L-series or higher Bernoulli numbers. As a central point of the monograph a general Proportionality Theorem in terms of orbital hights is proved. It yields a strong criterion to decide effectively whether a surface with given cycle supports a ball quotient structure being Kaehler-Einstein with negative constant holomorphic sectional curvature outside of this cycle. The theory is applied to the classification of Picard modular surfaces and to surfaces geography.