Automatic Algorithm Selection for Complex Simulation Problems

Automatic Algorithm Selection for Complex Simulation Problems
Author: Roland Ewald
Publisher: Springer Science & Business Media
Total Pages: 387
Release: 2011-11-20
Genre: Computers
ISBN: 3834881511

To select the most suitable simulation algorithm for a given task is often difficult. This is due to intricate interactions between model features, implementation details, and runtime environment, which may strongly affect the overall performance. An automated selection of simulation algorithms supports users in setting up simulation experiments without demanding expert knowledge on simulation. Roland Ewald analyzes and discusses existing approaches to solve the algorithm selection problem in the context of simulation. He introduces a framework for automatic simulation algorithm selection and describes its integration into the open-source modelling and simulation framework James II. Its selection mechanisms are able to cope with three situations: no prior knowledge is available, the impact of problem features on simulator performance is unknown, and a relationship between problem features and algorithm performance can be established empirically. The author concludes with an experimental evaluation of the developed methods.

Analytical Methods in Statistics

Analytical Methods in Statistics
Author: Matúš Maciak
Publisher: Springer Nature
Total Pages: 159
Release: 2020-07-19
Genre: Mathematics
ISBN: 3030488144

This book collects peer-reviewed contributions on modern statistical methods and topics, stemming from the third workshop on Analytical Methods in Statistics, AMISTAT 2019, held in Liberec, Czech Republic, on September 16-19, 2019. Real-life problems demand statistical solutions, which in turn require new and profound mathematical methods. As such, the book is not only a collection of solved problems but also a source of new methods and their practical extensions. The authoritative contributions focus on analytical methods in statistics, asymptotics, estimation and Fisher information, robustness, stochastic models and inequalities, and other related fields; further, they address e.g. average autoregression quantiles, neural networks, weighted empirical minimum distance estimators, implied volatility surface estimation, the Grenander estimator, non-Gaussian component analysis, meta learning, and high-dimensional errors-in-variables models.

Identifying and Harnessing Concurrency for Parallel and Distributed Network Simulation

Identifying and Harnessing Concurrency for Parallel and Distributed Network Simulation
Author: Andelfinger, Philipp Josef
Publisher: KIT Scientific Publishing
Total Pages: 166
Release: 2016-07-28
Genre: Electronic computers. Computer science
ISBN: 3731505118

Although computer networks are inherently parallel systems, the parallel execution of network simulations on interconnected processors frequently yields only limited benefits. In this thesis, methods are proposed to estimate and understand the parallelization potential of network simulations. Further, mechanisms and architectures for exploiting the massively parallel processing resources of modern graphics cards to accelerate network simulations are proposed and evaluated.

Hypothesis-Driven Simulation Studies

Hypothesis-Driven Simulation Studies
Author: Fabian Lorig
Publisher: Springer
Total Pages: 407
Release: 2019-08-16
Genre: Computers
ISBN: 365827588X

Fabian Lorig develops a procedure model for hypothesis-driven simulation studies which supports the design, conducting, and analysis of simulation experiments. It is aimed at facilitating the execution of simulation studies with regard to the replicability and reproducibility of the results. In comparison to existing models, this approach is based on a formally specified hypothesis. Each step of the simulation study can be adapted to the central hypothesis and performed in such a way that it can optimally contribute to the verification and thus to the confirmation or rejection of the hypothesis.

Modeling, Simulation and Optimization for Science and Technology

Modeling, Simulation and Optimization for Science and Technology
Author: William Fitzgibbon
Publisher: Springer
Total Pages: 252
Release: 2014-06-18
Genre: Technology & Engineering
ISBN: 940179054X

This volume contains thirteen articles on advances in applied mathematics and computing methods for engineering problems. Six papers are on optimization methods and algorithms with emphasis on problems with multiple criteria; four articles are on numerical methods for applied problems modeled with nonlinear PDEs; two contributions are on abstract estimates for error analysis; finally one paper deals with rare events in the context of uncertainty quantification. Applications include aerospace, glaciology and nonlinear elasticity. Herein is a selection of contributions from speakers at two conferences on applied mathematics held in June 2012 at the University of Jyväskylä, Finland. The first conference, “Optimization and PDEs with Industrial Applications” celebrated the seventieth birthday of Professor Jacques Périaux of the University of Jyväskylä and Polytechnic University of Catalonia (Barcelona Tech) and the second conference, “Optimization and PDEs with Applications” celebrated the seventy-fifth birthday of Professor Roland Glowinski of the University of Houston. This work should be of interest to researchers and practitioners as well as advanced students or engineers in computational and applied mathematics or mechanics.

Methods and Applications for Modeling and Simulation of Complex Systems

Methods and Applications for Modeling and Simulation of Complex Systems
Author: Liang Li
Publisher: Springer
Total Pages: 585
Release: 2018-10-17
Genre: Computers
ISBN: 9811328536

This volume constitutes the proceedings of the 18th Asia Simulation Conference, AsiaSim 2018, held in Kyoto, Japan, in August 2018. The 45 revised full papers presented in this volume were carefully reviewed and selected from 90 submissions. The papers are organized in topical sections on modeling and simulation technology; soft computing and machine learning; high performance computing and cloud computing; simulation technology for industry; simulation technology for intelligent society; simulation of instrumentation and control application; computational mathematics and computational science; flow simulation; visualization and computer vision to support simulation.

Numerical Simulation in Molecular Dynamics

Numerical Simulation in Molecular Dynamics
Author: Michael Griebel
Publisher: Springer Science & Business Media
Total Pages: 472
Release: 2007-08-16
Genre: Science
ISBN: 3540680950

This book details the necessary numerical methods, the theoretical background and foundations and the techniques involved in creating computer particle models, including linked-cell method, SPME-method, tree codes, amd multipol technique. It illustrates modeling, discretization, algorithms and their parallel implementation with MPI on computer systems with distributed memory. The text offers step-by-step explanations of numerical simulation, providing illustrative code examples. With the description of the algorithms and the presentation of the results of various simulations from fields such as material science, nanotechnology, biochemistry and astrophysics, the reader of this book will learn how to write programs capable of running successful experiments for molecular dynamics.

Life System Modeling and Intelligent Computing

Life System Modeling and Intelligent Computing
Author: Kang Li
Publisher: Springer Science & Business Media
Total Pages: 273
Release: 2010-09-03
Genre: Science
ISBN: 3642158587

The 2010 International Conference on Life System Modeling and Simulation (LSMS 2010) and the 2010 International Conference on Intelligent Computing for Susta- able Energy and Environment (ICSEE 2010) were formed to bring together resear- ers and practitioners in the fields of life system modeling/simulation and intelligent computing applied to worldwide sustainable energy and environmental applications. A life system is a broad concept, covering both micro and macro components ra- ing from cells, tissues and organs across to organisms and ecological niches. To c- prehend and predict the complex behavior of even a simple life system can be - tremely difficult using conventional approaches. To meet this challenge, a variety of new theories and methodologies have emerged in recent years on life system mod- ing and simulation. Along with improved understanding of the behavior of biological systems, novel intelligent computing paradigms and techniques have emerged to h- dle complicated real-world problems and applications. In particular, intelligent c- puting approaches have been valuable in the design and development of systems and facilities for achieving sustainable energy and a sustainable environment, the two most challenging issues currently facing humanity. The two LSMS 2010 and ICSEE 2010 conferences served as an important platform for synergizing these two research streams.

Automated Machine Learning

Automated Machine Learning
Author: Frank Hutter
Publisher: Springer
Total Pages: 223
Release: 2019-05-17
Genre: Computers
ISBN: 3030053180

This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.