Asymptotics for Solutions of Linear Differential Equations Having Turning Points with Applications

Asymptotics for Solutions of Linear Differential Equations Having Turning Points with Applications
Author: Shlomo Strelitz
Publisher: American Mathematical Soc.
Total Pages: 105
Release: 1999
Genre: Mathematics
ISBN: 0821813528

Asymptotics are built for the solutions $y_j(x, \lambda)$, $y_j DEGREES{(k)}(0, \lambda)=\delta_{j\, n-k}$, $0\le j, k+1\le n$ of the equation $L(y)=\lambda p(x)y, \quad x\in [0,1], $ where $L(y)$ is a linear differential operator of whatever order $n\ge 2$ and $p(x)$ is assumed to possess a finite number of turning points. The established asymptotics are afterwards applied to the study of: 1) the existence of infinite eigenvalue sequences for various multipoint boundary problems posed on $L(y)=\lambda p(x)y, \quad x\in [0,1], $, especially as $n=2$ and $n=3$ (let us be aware that the same method can be successfully applied on many occasions in case $n>3$ too) and 2) asymptotical distribution of the corresponding eigenvalue sequences on the

Asymptotic Expansions for Ordinary Differential Equations

Asymptotic Expansions for Ordinary Differential Equations
Author: Wolfgang Wasow
Publisher: Courier Dover Publications
Total Pages: 385
Release: 2018-03-21
Genre: Mathematics
ISBN: 0486824586

This outstanding text concentrates on the mathematical ideas underlying various asymptotic methods for ordinary differential equations that lead to full, infinite expansions. "A book of great value." — Mathematical Reviews. 1976 revised edition.

Asymptotics and Special Functions

Asymptotics and Special Functions
Author: F. W. J. Olver
Publisher: Academic Press
Total Pages: 589
Release: 2014-05-10
Genre: Mathematics
ISBN: 148326744X

Asymptotics and Special Functions provides a comprehensive introduction to two important topics in classical analysis: asymptotics and special functions. The integrals of a real variable and contour integrals are discussed, along with the Liouville-Green approximation and connection formulas for solutions of differential equations. Differential equations with regular singularities are also considered, with emphasis on hypergeometric and Legendre functions. Comprised of 14 chapters, this volume begins with an introduction to the basic concepts and definitions of asymptotic analysis and special functions, followed by a discussion on asymptotic theories of definite integrals containing a parameter. Contour integrals as well as integrals of a real variable are described. Subsequent chapters deal with the analytic theory of ordinary differential equations; differential equations with regular and irregular singularities; sums and sequences; and connection formulas for solutions of differential equations. The book concludes with an evaluation of methods used in estimating (as opposed to bounding) errors in asymptotic approximations and expansions. This monograph is intended for graduate mathematicians, physicists, and engineers.

Asymptotics and Special Functions

Asymptotics and Special Functions
Author: Frank Olver
Publisher: CRC Press
Total Pages: 591
Release: 1997-01-24
Genre: Mathematics
ISBN: 1439864543

A classic reference, intended for graduate students mathematicians, physicists, and engineers, this book can be used both as the basis for instructional courses and as a reference tool.

NIST Handbook of Mathematical Functions Hardback and CD-ROM

NIST Handbook of Mathematical Functions Hardback and CD-ROM
Author: Frank W. J. Olver
Publisher: Cambridge University Press
Total Pages: 968
Release: 2010-05-17
Genre: Mathematics
ISBN: 0521192250

The new standard reference on mathematical functions, replacing the classic but outdated handbook from Abramowitz and Stegun. Includes PDF version.

Mathematical Analysis

Mathematical Analysis
Author: R. V. Gamkrelidze
Publisher: Springer Science & Business Media
Total Pages: 223
Release: 2012-12-06
Genre: Mathematics
ISBN: 1468433032

This volume contains three articles: "Asymptotic methods in the theory of ordinary differential equations" b'y V. F. Butuzov, A. B. Vasil'eva, and M. V. Fedoryuk, "The theory of best ap proximation in Dormed linear spaces" by A. L. Garkavi, and "Dy namical systems with invariant measure" by A. 'VI. Vershik and S. A. Yuzvinskii. The first article surveys the literature on linear and non linear singular asymptotic problems, in particular, differential equations with a small parameter. The period covered by the survey is primarily 1962-1967. The second article is devoted to the problem of existence, characterization, and uniqueness of best approximations in Banach spaces. One of the chapters also deals with the problem of the convergence of positive operators, inasmuch as the ideas and methods of this theory are close to those of the theory of best ap proximation. The survey covers the literature of the decade 1958-1967. The third article is devoted to a comparatively new and rapid ly growing branch of mathematics which is closely related to many classical and modern mathematical disciplines. A survey is given of results in entropy theory, classical dynamic systems, ergodic theorems, etc. The results surveyed were primarily published during the period 1956-1967.