Asymptotic Theory Of Statistics And Probability
Download Asymptotic Theory Of Statistics And Probability full books in PDF, epub, and Kindle. Read online free Asymptotic Theory Of Statistics And Probability ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Anirban DasGupta |
Publisher | : Springer Science & Business Media |
Total Pages | : 726 |
Release | : 2008-03-07 |
Genre | : Mathematics |
ISBN | : 0387759700 |
This unique book delivers an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. The book is unique in its detailed coverage of fundamental topics. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the impact and relevance of the theorems. There is no other book in large sample theory that matches this book in coverage, exercises and examples, bibliography, and lucid conceptual discussion of issues and theorems.
Author | : A. W. van der Vaart |
Publisher | : Cambridge University Press |
Total Pages | : 470 |
Release | : 2000-06-19 |
Genre | : Mathematics |
ISBN | : 9780521784504 |
This book is an introduction to the field of asymptotic statistics. The treatment is both practical and mathematically rigorous. In addition to most of the standard topics of an asymptotics course, including likelihood inference, M-estimation, the theory of asymptotic efficiency, U-statistics, and rank procedures, the book also presents recent research topics such as semiparametric models, the bootstrap, and empirical processes and their applications. The topics are organized from the central idea of approximation by limit experiments, which gives the book one of its unifying themes. This entails mainly the local approximation of the classical i.i.d. set up with smooth parameters by location experiments involving a single, normally distributed observation. Thus, even the standard subjects of asymptotic statistics are presented in a novel way. Suitable as a graduate or Master s level statistics text, this book will also give researchers an overview of the latest research in asymptotic statistics.
Author | : |
Publisher | : |
Total Pages | : 533 |
Release | : 2007 |
Genre | : Mathematical statistics |
ISBN | : 9787040221527 |
Author | : B. L. S. Prakasa Rao |
Publisher | : |
Total Pages | : 458 |
Release | : 1987-01-16 |
Genre | : Mathematics |
ISBN | : |
Probability and stochastic processes; Limit theorems for some statistics; Asymptotic theory of estimation; Linear parametric inference; Martingale approach to inference; Inference in nonlinear regression; Von mises functionals; Empirical characteristic function and its applications.
Author | : I.A. Ibragimov |
Publisher | : Springer Science & Business Media |
Total Pages | : 410 |
Release | : 2013-11-11 |
Genre | : Mathematics |
ISBN | : 1489900276 |
when certain parameters in the problem tend to limiting values (for example, when the sample size increases indefinitely, the intensity of the noise ap proaches zero, etc.) To address the problem of asymptotically optimal estimators consider the following important case. Let X 1, X 2, ... , X n be independent observations with the joint probability density !(x,O) (with respect to the Lebesgue measure on the real line) which depends on the unknown patameter o e 9 c R1. It is required to derive the best (asymptotically) estimator 0:( X b ... , X n) of the parameter O. The first question which arises in connection with this problem is how to compare different estimators or, equivalently, how to assess their quality, in terms of the mean square deviation from the parameter or perhaps in some other way. The presently accepted approach to this problem, resulting from A. Wald's contributions, is as follows: introduce a nonnegative function w(0l> ( ), Ob Oe 9 (the loss function) and given two estimators Of and O! n 2 2 the estimator for which the expected loss (risk) Eown(Oj, 0), j = 1 or 2, is smallest is called the better with respect to Wn at point 0 (here EoO is the expectation evaluated under the assumption that the true value of the parameter is 0). Obviously, such a method of comparison is not without its defects.
Author | : Lucien Le Cam |
Publisher | : Springer Science & Business Media |
Total Pages | : 299 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461211662 |
This is the second edition of a coherent introduction to the subject of asymptotic statistics as it has developed over the past 50 years. It differs from the first edition in that it is now more 'reader friendly' and also includes a new chapter on Gaussian and Poisson experiments, reflecting their growing role in the field. Most of the subsequent chapters have been entirely rewritten and the nonparametrics of Chapter 7 have been amplified. The volume is not intended to replace monographs on specialized subjects, but will help to place them in a coherent perspective. It thus represents a link between traditional material - such as maximum likelihood, and Wald's Theory of Statistical Decision Functions -- together with comparison and distances for experiments. Much of the material has been taught in a second year graduate course at Berkeley for 30 years.
Author | : Masahito Hayashi |
Publisher | : World Scientific |
Total Pages | : 553 |
Release | : 2005-02-21 |
Genre | : Science |
ISBN | : 981448198X |
Quantum statistical inference, a research field with deep roots in the foundations of both quantum physics and mathematical statistics, has made remarkable progress since 1990. In particular, its asymptotic theory has been developed during this period. However, there has hitherto been no book covering this remarkable progress after 1990; the famous textbooks by Holevo and Helstrom deal only with research results in the earlier stage (1960s-1970s).This book presents the important and recent results of quantum statistical inference. It focuses on the asymptotic theory, which is one of the central issues of mathematical statistics and had not been investigated in quantum statistical inference until the early 1980s. It contains outstanding papers after Holevo's textbook, some of which are of great importance but are not available now.The reader is expected to have only elementary mathematical knowledge, and therefore much of the content will be accessible to graduate students as well as research workers in related fields. Introductions to quantum statistical inference have been specially written for the book. Asymptotic Theory of Quantum Statistical Inference: Selected Papers will give the reader a new insight into physics and statistical inference.
Author | : János Galambos |
Publisher | : |
Total Pages | : 442 |
Release | : 1987 |
Genre | : Mathematics |
ISBN | : |
Author | : Reinhard Höpfner |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 327 |
Release | : 2014-05-26 |
Genre | : Mathematics |
ISBN | : 3110367785 |
This textbook is devoted to the general asymptotic theory of statistical experiments. Local asymptotics for statistical models in the sense of local asymptotic (mixed) normality or local asymptotic quadraticity make up the core of the book. Numerous examples deal with classical independent and identically distributed models and with stochastic processes. The book can be read in different ways, according to possibly different mathematical preferences of the reader. One reader may focus on the statistical theory, and thus on the chapters about Gaussian shift models, mixed normal and quadratic models, and on local asymptotics where the limit model is a Gaussian shift or a mixed normal or a quadratic experiment (LAN, LAMN, LAQ). Another reader may prefer an introduction to stochastic process models where given statistical results apply, and thus concentrate on subsections or chapters on likelihood ratio processes and some diffusion type models where LAN, LAMN or LAQ occurs. Finally, readers might put together both aspects. The book is suitable for graduate students starting to work in statistics of stochastic processes, as well as for researchers interested in a precise introduction to this area.
Author | : Masanobu Taniguchi |
Publisher | : Springer |
Total Pages | : 0 |
Release | : 2012-10-23 |
Genre | : Mathematics |
ISBN | : 9781461270287 |
The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual AR, MA, and ARMA processes. A wide variety of stochastic processes, including non-Gaussian linear processes, long-memory processes, nonlinear processes, non-ergodic processes and diffusion processes are described. The authors discuss estimation and testing theory and many other relevant statistical methods and techniques.