Aspects of Boundary Problems in Analysis and Geometry

Aspects of Boundary Problems in Analysis and Geometry
Author: Juan Gil
Publisher: Birkhäuser
Total Pages: 574
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034878508

Boundary problems constitute an essential field of common mathematical interest, they lie in the center of research activities both in analysis and geometry. This book encompasses material from both disciplines, and focuses on their interactions which are particularly apparent in this field. Moreover, the survey style of the contributions makes the topics accessible to a broad audience with a background in analysis or geometry, and enables the reader to get a quick overview.

A Geometric Approach to Free Boundary Problems

A Geometric Approach to Free Boundary Problems
Author: Luis A. Caffarelli
Publisher: American Mathematical Soc.
Total Pages: 282
Release: 2005
Genre: Mathematics
ISBN: 0821837842

We hope that the tools and ideas presented here will serve as a basis for the study of more complex phenomena and problems."--Jacket.

Hodge Decomposition - A Method for Solving Boundary Value Problems

Hodge Decomposition - A Method for Solving Boundary Value Problems
Author: Günter Schwarz
Publisher: Springer
Total Pages: 161
Release: 2006-11-14
Genre: Mathematics
ISBN: 3540494030

Hodge theory is a standard tool in characterizing differ- ential complexes and the topology of manifolds. This book is a study of the Hodge-Kodaira and related decompositions on manifolds with boundary under mainly analytic aspects. It aims at developing a method for solving boundary value problems. Analysing a Dirichlet form on the exterior algebra bundle allows to give a refined version of the classical decomposition results of Morrey. A projection technique leads to existence and regularity theorems for a wide class of boundary value problems for differential forms and vector fields. The book links aspects of the geometry of manifolds with the theory of partial differential equations. It is intended to be comprehensible for graduate students and mathematicians working in either of these fields.

Geometric and Spectral Analysis

Geometric and Spectral Analysis
Author: Pierre Albin
Publisher: American Mathematical Soc.
Total Pages: 378
Release: 2014-12-01
Genre: Mathematics
ISBN: 1470410435

In 2012, the Centre de Recherches Mathématiques was at the center of many interesting developments in geometric and spectral analysis, with a thematic program on Geometric Analysis and Spectral Theory followed by a thematic year on Moduli Spaces, Extremality and Global Invariants. This volume contains original contributions as well as useful survey articles of recent developments by participants from three of the workshops organized during these programs: Geometry of Eigenvalues and Eigenfunctions, held from June 4-8, 2012; Manifolds of Metrics and Probabilistic Methods in Geometry and Analysis, held from July 2-6, 2012; and Spectral Invariants on Non-compact and Singular Spaces, held from July 23-27, 2012. The topics covered in this volume include Fourier integral operators, eigenfunctions, probability and analysis on singular spaces, complex geometry, Kähler-Einstein metrics, analytic torsion, and Strichartz estimates. This book is co-published with the Centre de Recherches Mathématiques.

Analysis and Geometry on Graphs and Manifolds

Analysis and Geometry on Graphs and Manifolds
Author: Matthias Keller
Publisher: Cambridge University Press
Total Pages: 493
Release: 2020-08-20
Genre: Mathematics
ISBN: 1108587380

This book addresses the interplay between several rapidly expanding areas of mathematics. Suitable for graduate students as well as researchers, it provides surveys of topics linking geometry, spectral theory and stochastics.

Handbook of Global Analysis

Handbook of Global Analysis
Author: Demeter Krupka
Publisher: Elsevier
Total Pages: 1243
Release: 2011-08-11
Genre: Mathematics
ISBN: 0080556736

This is a comprehensive exposition of topics covered by the American Mathematical Society’s classification “Global Analysis , dealing with modern developments in calculus expressed using abstract terminology. It will be invaluable for graduate students and researchers embarking on advanced studies in mathematics and mathematical physics.This book provides a comprehensive coverage of modern global analysis and geometrical mathematical physics, dealing with topics such as; structures on manifolds, pseudogroups, Lie groupoids, and global Finsler geometry; the topology of manifolds and differentiable mappings; differential equations (including ODEs, differential systems and distributions, and spectral theory); variational theory on manifolds, with applications to physics; function spaces on manifolds; jets, natural bundles and generalizations; and non-commutative geometry. - Comprehensive coverage of modern global analysis and geometrical mathematical physics- Written by world-experts in the field- Up-to-date contents

The Analysis and Geometry of Hardy's Inequality

The Analysis and Geometry of Hardy's Inequality
Author: Alexander A. Balinsky
Publisher: Springer
Total Pages: 277
Release: 2015-10-20
Genre: Mathematics
ISBN: 3319228706

This volume presents advances that have been made over recent decades in areas of research featuring Hardy's inequality and related topics. The inequality and its extensions and refinements are not only of intrinsic interest but are indispensable tools in many areas of mathematics and mathematical physics. Hardy inequalities on domains have a substantial role and this necessitates a detailed investigation of significant geometric properties of a domain and its boundary. Other topics covered in this volume are Hardy- Sobolev-Maz’ya inequalities; inequalities of Hardy-type involving magnetic fields; Hardy, Sobolev and Cwikel-Lieb-Rosenbljum inequalities for Pauli operators; the Rellich inequality. The Analysis and Geometry of Hardy’s Inequality provides an up-to-date account of research in areas of contemporary interest and would be suitable for a graduate course in mathematics or physics. A good basic knowledge of real and complex analysis is a prerequisite.

Elements of Combinatorial and Differential Topology

Elements of Combinatorial and Differential Topology
Author: V. V. Prasolov
Publisher: American Mathematical Society
Total Pages: 331
Release: 2022-03-25
Genre: Mathematics
ISBN: 1470469448

Modern topology uses very diverse methods. This book is devoted largely to methods of combinatorial topology, which reduce the study of topological spaces to investigations of their partitions into elementary sets, and to methods of differential topology, which deal with smooth manifolds and smooth maps. Many topological problems can be solved by using either of these two kinds of methods, combinatorial or differential. In such cases, both approaches are discussed. One of the main goals of this book is to advance as far as possible in the study of the properties of topological spaces (especially manifolds) without employing complicated techniques. This distinguishes it from the majority of other books on topology. The book contains many problems; almost all of them are supplied with hints or complete solutions.

Nonlinear Analysis, Geometry and Applications

Nonlinear Analysis, Geometry and Applications
Author: Diaraf Seck
Publisher: Springer Nature
Total Pages: 525
Release: 2022-10-09
Genre: Mathematics
ISBN: 3031046161

This book gathers twenty-two papers presented at the second NLAGA-BIRS Symposium, which was held at Cap Skirring and at the Assane Seck University in Ziguinchor, Senegal, on January 25–30, 2022. The five-day symposium brought together African experts on nonlinear analysis and geometry and their applications, as well as their international partners, to present and discuss mathematical results in various areas. The main goal of the NLAGA project is to advance and consolidate the development of these mathematical fields in West and Central Africa with a focus on solving real-world problems such as coastal erosion, pollution, and urban network and population dynamics problems. The book addresses a range of topics related to partial differential equations, geometric analysis, geometric structures, dynamics, optimization, inverse problems, complex analysis, algebra, algebraic geometry, control theory, stochastic approximations, and modelling.

Finite Elements Analysis: Procedures in Engineering

Finite Elements Analysis: Procedures in Engineering
Author: H. Lakshmininarayana
Publisher: Universities Press
Total Pages: 268
Release: 2004-10
Genre: Engineering mathematics
ISBN: 9788173714764

This textbook has emerged from three decades of experience gained by the author in education, research and practice. The basic concepts, mathematical models and computational algorithms supporting the Finite Element Method (FEM) are clearly and concisely developed.