Artificial Intelligence in Drug Discovery

Artificial Intelligence in Drug Discovery
Author: Nathan Brown
Publisher: Royal Society of Chemistry
Total Pages: 425
Release: 2020-11-04
Genre: Computers
ISBN: 1839160543

Following significant advances in deep learning and related areas interest in artificial intelligence (AI) has rapidly grown. In particular, the application of AI in drug discovery provides an opportunity to tackle challenges that previously have been difficult to solve, such as predicting properties, designing molecules and optimising synthetic routes. Artificial Intelligence in Drug Discovery aims to introduce the reader to AI and machine learning tools and techniques, and to outline specific challenges including designing new molecular structures, synthesis planning and simulation. Providing a wealth of information from leading experts in the field this book is ideal for students, postgraduates and established researchers in both industry and academia.

Drug Repurposing

Drug Repurposing
Author: Farid A. Badria
Publisher: BoD – Books on Demand
Total Pages: 236
Release: 2020-12-02
Genre: Medical
ISBN: 1839685204

Drug repurposing or drug repositioning is a new approach to presenting new indications for common commercial and clinically approved existing drugs. For example, chloroquine, an old antimalarial drug, showed promising results for treating COVID-19, interfering with MDR in several types of cancer, and chemosensitizing human leukemic cells.This book focuses on the hypothesis, risk/benefits, and economic impacts of drug repurposing on drug discovery in dermatology, infectious diseases, neurological disorders, cancer, and orphan diseases. It brings together up-to-date research to provide readers with an informative, illustrative, and easy-to-read book useful for students, clinicians, and the pharmaceutical industry.

Artificial Intelligence in Drug Design

Artificial Intelligence in Drug Design
Author: Alexander Heifetz
Publisher: Humana
Total Pages: 0
Release: 2022-11-05
Genre: Medical
ISBN: 9781071617892

This volume looks at applications of artificial intelligence (AI), machine learning (ML), and deep learning (DL) in drug design. The chapters in this book describe how AI/ML/DL approaches can be applied to accelerate and revolutionize traditional drug design approaches such as: structure- and ligand-based, augmented and multi-objective de novo drug design, SAR and big data analysis, prediction of binding/activity, ADMET, pharmacokinetics and drug-target residence time, precision medicine and selection of favorable chemical synthetic routes. How broadly are these approaches applied and where do they maximally impact productivity today and potentially in the near future. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary software and tools, step-by-step, readily reproducible modeling protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and unique, Artificial Intelligence in Drug Design is a valuable resource for structural and molecular biologists, computational and medicinal chemists, pharmacologists and drug designers.

Computational Methods for Drug Repurposing

Computational Methods for Drug Repurposing
Author: Quentin Vanhaelen
Publisher: Humana
Total Pages: 0
Release: 2018-12-14
Genre: Medical
ISBN: 9781493989546

This detailed book explores techniques commonly used for research into drug repurposing, a well-known strategy to find alternative indications for drugs which have already undergone toxicology and pharma-kinetic studies but have failed later stages during the development, via computational methods. Thereby, it addresses the intense challenges of identifying the appropriate type of algorithm and relevant technical information for computational repurposing. Written for the highly successful Methods in Molecular Biology series, the authors of each chapter use their experience in the field to describe the implementation and successful use of a specific repurposing method thus providing lab-ready instruction. Authoritative and practical, Computational Methods for Drug Repurposing serves as an ideal guide to researchers interested in this vital area of drug development.

Artificial Intelligence for COVID-19

Artificial Intelligence for COVID-19
Author: Diego Oliva
Publisher: Springer Nature
Total Pages: 594
Release: 2021-07-19
Genre: Technology & Engineering
ISBN: 3030697444

This book presents a compilation of the most recent implementation of artificial intelligence methods for solving different problems generated by the COVID-19. The problems addressed came from different fields and not only from medicine. The information contained in the book explores different areas of machine and deep learning, advanced image processing, computational intelligence, IoT, robotics and automation, optimization, mathematical modeling, neural networks, information technology, big data, data processing, data mining, and likewise. Moreover, the chapters include the theory and methodologies used to provide an overview of applying these tools to the useful contribution to help to face the emerging disaster. The book is primarily intended for researchers, decision makers, practitioners, and readers interested in these subject matters. The book is useful also as rich case studies and project proposals for postgraduate courses in those specializations.

Deep Learning on Graphs

Deep Learning on Graphs
Author: Yao Ma
Publisher: Cambridge University Press
Total Pages: 339
Release: 2021-09-23
Genre: Computers
ISBN: 1108831745

A comprehensive text on foundations and techniques of graph neural networks with applications in NLP, data mining, vision and healthcare.

Biomedical Data Mining for Information Retrieval

Biomedical Data Mining for Information Retrieval
Author: Sujata Dash
Publisher: John Wiley & Sons
Total Pages: 450
Release: 2021-08-24
Genre: Computers
ISBN: 111971124X

BIOMEDICAL DATA MINING FOR INFORMATION RETRIEVAL This book not only emphasizes traditional computational techniques, but discusses data mining, biomedical image processing, information retrieval with broad coverage of basic scientific applications. Biomedical Data Mining for Information Retrieval comprehensively covers the topic of mining biomedical text, images and visual features towards information retrieval. Biomedical and health informatics is an emerging field of research at the intersection of information science, computer science, and healthcare and brings tremendous opportunities and challenges due to easily available and abundant biomedical data for further analysis. The aim of healthcare informatics is to ensure the high-quality, efficient healthcare, better treatment and quality of life by analyzing biomedical and healthcare data including patient’s data, electronic health records (EHRs) and lifestyle. Previously, it was a common requirement to have a domain expert to develop a model for biomedical or healthcare; however, recent advancements in representation learning algorithms allows us to automatically to develop the model. Biomedical image mining, a novel research area, due to the vast amount of available biomedical images, increasingly generates and stores digitally. These images are mainly in the form of computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients’ biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions relating to healthcare. Image mining in medicine can help to uncover new relationships between data and reveal new useful information that can be helpful for doctors in treating their patients. Audience Researchers in various fields including computer science, medical informatics, healthcare IOT, artificial intelligence, machine learning, image processing, clinical big data analytics.

Drug Repurposing in Cancer Therapy

Drug Repurposing in Cancer Therapy
Author: Kenneth K.W. To
Publisher: Academic Press
Total Pages: 460
Release: 2020-07-29
Genre: Science
ISBN: 0128199032

Drug Repurposing in Cancer Therapy: Approaches and Applications provides comprehensive and updated information from experts in basic science research and clinical practice on how existing drugs can be repurposed for cancer treatment. The book summarizes successful stories that may assist researchers in the field to better design their studies for new repurposing projects. Sections discuss specific topics such as in silico prediction and high throughput screening of repurposed drugs, drug repurposing for overcoming chemoresistance and eradicating cancer stem cells, and clinical investigation on combination of repurposed drug and anticancer therapy. Cancer researchers, oncologists, pharmacologists and several members of biomedical field who are interested in learning more about the use of existing drugs for different purposes in cancer therapy will find this to be a valuable resource. - Presents a systematic and up-to-date collection of the research underpinning the various drug repurposing approaches for a quick, but in-depth understanding on current trends in drug repurposing research - Brings better understanding of the drug repurposing process in a holistic way, combining both basic and clinical sciences - Encompasses a collection of successful stories of drug repurposing for cancer therapy in different cancer types

Applications of Machine Learning

Applications of Machine Learning
Author: Prashant Johri
Publisher: Springer Nature
Total Pages: 404
Release: 2020-05-04
Genre: Technology & Engineering
ISBN: 9811533571

This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics.