Global Aspects of Classical Integrable Systems

Global Aspects of Classical Integrable Systems
Author: Richard H. Cushman
Publisher: Birkhäuser
Total Pages: 449
Release: 2012-12-06
Genre: Science
ISBN: 3034888910

This book gives a complete global geometric description of the motion of the two di mensional hannonic oscillator, the Kepler problem, the Euler top, the spherical pendulum and the Lagrange top. These classical integrable Hamiltonian systems one sees treated in almost every physics book on classical mechanics. So why is this book necessary? The answer is that the standard treatments are not complete. For instance in physics books one cannot see the monodromy in the spherical pendulum from its explicit solution in terms of elliptic functions nor can one read off from the explicit solution the fact that a tennis racket makes a near half twist when it is tossed so as to spin nearly about its intermediate axis. Modem mathematics books on mechanics do not use the symplectic geometric tools they develop to treat the qualitative features of these problems either. One reason for this is that their basic tool for removing symmetries of Hamiltonian systems, called regular reduction, is not general enough to handle removal of the symmetries which occur in the spherical pendulum or in the Lagrange top. For these symmetries one needs singular reduction. Another reason is that the obstructions to making local action angle coordinates global such as monodromy were not known when these works were written.

Fourier Analysis

Fourier Analysis
Author: T. W. Körner
Publisher: Cambridge University Press
Total Pages: 610
Release: 1988
Genre: Mathematics
ISBN: 9780521389914

Fourier analysis is a subject that was born in physics but grew up in mathematics. Now it is part of the standard repertoire for mathematicians, physicists and engineers. In most books, this diversity of interest is often ignored, but here Dr Körner has provided a shop-window for some of the ideas, techniques and elegant results of Fourier analysis, and for their applications. These range from number theory, numerical analysis, control theory and statistics, to earth science, astronomy, and electrical engineering. Each application is placed in perspective by a short essay. The prerequisites are few (the reader with knowledge of second or third year undergraduate mathematics should have no difficulty following the text), and the style is lively and entertaining. In short, this stimulating account will be welcomed by all who like to read about more than the bare bones of a subject. For them this will be a meaty guide to Fourier analysis.