Arithmetic Geometry Of Logarithmic Pairs And Hyperbolicity Of Moduli Spaces
Download Arithmetic Geometry Of Logarithmic Pairs And Hyperbolicity Of Moduli Spaces full books in PDF, epub, and Kindle. Read online free Arithmetic Geometry Of Logarithmic Pairs And Hyperbolicity Of Moduli Spaces ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Marc-Hubert Nicole |
Publisher | : Springer Nature |
Total Pages | : 247 |
Release | : 2020-10-31 |
Genre | : Mathematics |
ISBN | : 3030498646 |
This textbook introduces exciting new developments and cutting-edge results on the theme of hyperbolicity. Written by leading experts in their respective fields, the chapters stem from mini-courses given alongside three workshops that took place in Montréal between 2018 and 2019. Each chapter is self-contained, including an overview of preliminaries for each respective topic. This approach captures the spirit of the original lectures, which prepared graduate students and those new to the field for the technical talks in the program. The four chapters turn the spotlight on the following pivotal themes: The basic notions of o-minimal geometry, which build to the proof of the Ax–Schanuel conjecture for variations of Hodge structures; A broad introduction to the theory of orbifold pairs and Campana's conjectures, with a special emphasis on the arithmetic perspective; A systematic presentation and comparison between different notions of hyperbolicity, as an introduction to the Lang–Vojta conjectures in the projective case; An exploration of hyperbolicity and the Lang–Vojta conjectures in the general case of quasi-projective varieties. Arithmetic Geometry of Logarithmic Pairs and Hyperbolicity of Moduli Spaces is an ideal resource for graduate students and researchers in number theory, complex algebraic geometry, and arithmetic geometry. A basic course in algebraic geometry is assumed, along with some familiarity with the vocabulary of algebraic number theory.
Author | : Jonathan Pila |
Publisher | : Cambridge University Press |
Total Pages | : 267 |
Release | : 2022-06-09 |
Genre | : Mathematics |
ISBN | : 1009170325 |
Explores the recent spectacular applications of point-counting in o-minimal structures to functional transcendence and diophantine geometry.
Author | : Ivan Cheltsov |
Publisher | : Springer Nature |
Total Pages | : 882 |
Release | : 2023-05-23 |
Genre | : Mathematics |
ISBN | : 3031178599 |
This book collects the proceedings of a series of conferences dedicated to birational geometry of Fano varieties held in Moscow, Shanghai and Pohang The conferences were focused on the following two related problems: • existence of Kähler–Einstein metrics on Fano varieties • degenerations of Fano varieties on which two famous conjectures were recently proved. The first is the famous Borisov–Alexeev–Borisov Conjecture on the boundedness of Fano varieties, proved by Caucher Birkar (for which he was awarded the Fields medal in 2018), and the second one is the (arguably even more famous) Tian–Yau–Donaldson Conjecture on the existence of Kähler–Einstein metrics on (smooth) Fano varieties and K-stability, which was proved by Xiuxiong Chen, Sir Simon Donaldson and Song Sun. The solutions for these longstanding conjectures have opened new directions in birational and Kähler geometries. These research directions generated new interesting mathematical problems, attracting the attention of mathematicians worldwide. These conferences brought together top researchers in both fields (birational geometry and complex geometry) to solve some of these problems and understand the relations between them. The result of this activity is collected in this book, which contains contributions by sixty nine mathematicians, who contributed forty three research and survey papers to this volume. Many of them were participants of the Moscow–Shanghai–Pohang conferences, while the others helped to expand the research breadth of the volume—the diversity of their contributions reflects the vitality of modern Algebraic Geometry.
Author | : |
Publisher | : |
Total Pages | : 916 |
Release | : 2008 |
Genre | : Mathematics |
ISBN | : |
Author | : Daniel Huybrechts |
Publisher | : Cambridge University Press |
Total Pages | : 345 |
Release | : 2010-05-27 |
Genre | : Mathematics |
ISBN | : 1139485822 |
This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.
Author | : Fedor Bogomolov |
Publisher | : Springer Science & Business Media |
Total Pages | : 324 |
Release | : 2013-05-17 |
Genre | : Mathematics |
ISBN | : 146146482X |
This book features recent developments in a rapidly growing area at the interface of higher-dimensional birational geometry and arithmetic geometry. It focuses on the geometry of spaces of rational curves, with an emphasis on applications to arithmetic questions. Classically, arithmetic is the study of rational or integral solutions of diophantine equations and geometry is the study of lines and conics. From the modern standpoint, arithmetic is the study of rational and integral points on algebraic varieties over nonclosed fields. A major insight of the 20th century was that arithmetic properties of an algebraic variety are tightly linked to the geometry of rational curves on the variety and how they vary in families. This collection of solicited survey and research papers is intended to serve as an introduction for graduate students and researchers interested in entering the field, and as a source of reference for experts working on related problems. Topics that will be addressed include: birational properties such as rationality, unirationality, and rational connectedness, existence of rational curves in prescribed homology classes, cones of rational curves on rationally connected and Calabi-Yau varieties, as well as related questions within the framework of the Minimal Model Program.
Author | : Daniel Huybrechts |
Publisher | : Cambridge University Press |
Total Pages | : 499 |
Release | : 2016-09-26 |
Genre | : Mathematics |
ISBN | : 1316797252 |
K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.
Author | : Clay Mathematics Institute. Summer School |
Publisher | : American Mathematical Soc. |
Total Pages | : 396 |
Release | : 2004 |
Genre | : Mathematics |
ISBN | : 9780821837153 |
Contains selection of expository and research article by lecturers at the school. Highlights current interests of researchers working at the interface between string theory and algebraic supergravity, supersymmetry, D-branes, the McKay correspondence andFourer-Mukai transform.
Author | : Richard Evan Schwartz |
Publisher | : American Mathematical Soc. |
Total Pages | : 330 |
Release | : 2011 |
Genre | : Mathematics |
ISBN | : 0821853686 |
The goal of the book is to present a tapestry of ideas from various areas of mathematics in a clear and rigorous yet informal and friendly way. Prerequisites include undergraduate courses in real analysis and in linear algebra, and some knowledge of complex analysis. --from publisher description.
Author | : Benson Farb |
Publisher | : American Mathematical Soc. |
Total Pages | : 371 |
Release | : 2013-08-16 |
Genre | : Mathematics |
ISBN | : 0821898876 |
Mapping class groups and moduli spaces of Riemann surfaces were the topics of the Graduate Summer School at the 2011 IAS/Park City Mathematics Institute. This book presents the nine different lecture series comprising the summer school, covering a selection of topics of current interest. The introductory courses treat mapping class groups and Teichmüller theory. The more advanced courses cover intersection theory on moduli spaces, the dynamics of polygonal billiards and moduli spaces, the stable cohomology of mapping class groups, the structure of Torelli groups, and arithmetic mapping class groups. The courses consist of a set of intensive short lectures offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The book should be a valuable resource for graduate students and researchers interested in the topology, geometry and dynamics of moduli spaces of Riemann surfaces and related topics. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.