Approximation Theory Iv
Download Approximation Theory Iv full books in PDF, epub, and Kindle. Read online free Approximation Theory Iv ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : CHUI |
Publisher | : Birkhäuser |
Total Pages | : 348 |
Release | : 2013-03-08 |
Genre | : Science |
ISBN | : 3034872984 |
Multivariate Approximation Theory forms a rapidly evolving field in Applied Mathematics. The reason for its particular current interest lies in its impact on Computer Aided Geometric Design (CAGD), Image Processing, Pattern Recogni tion, and Mult idimensional Signal Processing. Mul ti var iate Bernstein polynomials and box splines, for example, play an important role in CAGD. Conversely, the highly important filter bank design problem of signal processing, for instance, gives rise to a new family of multivariate approximating functions, the Gabor wavelets, with interesting technological and biological applications. The conferences on Multivariate Approximation Theory held at the Mathematical Research Institute at Oberwolfach, Black Forest, in 1976, 1979, 1982, 1985 and 1989 ref lect the progress made in this area and related fie Ids. The present volume which is a continuation of the preceding volumes Constructive Theory of Functions of Several Variables, Lecture Notes in Mathematics 571 (1977) Multivariate Approximation Theory, ISNM 51 (1979) Multivariate Approximation Theory II, ISNM 61 (1982) Multivariate Approximation Theory III, ISNM 75 (1985) is based on the conference held on February 12-18, 1989. It includes most of the lectures presented at the Oberwolfach meeting and reveals the wide spectrum of activities in the field of multivariate approximation. The organizers are grateful to the Director of the Oberwolfach Mathematical Research Institute, Professor Dr. M. Barner, and his staff for providing the facili ties, and to Dr. G. Baszenski, Professor Dr. F. J. Delvos, Dr. H.
Author | : M. J. D. Powell |
Publisher | : Cambridge University Press |
Total Pages | : 356 |
Release | : 1981-03-31 |
Genre | : Mathematics |
ISBN | : 9780521295147 |
Most functions that occur in mathematics cannot be used directly in computer calculations. Instead they are approximated by manageable functions such as polynomials and piecewise polynomials. The general theory of the subject and its application to polynomial approximation are classical, but piecewise polynomials have become far more useful during the last twenty years. Thus many important theoretical properties have been found recently and many new techniques for the automatic calculation of approximations to prescribed accuracy have been developed. This book gives a thorough and coherent introduction to the theory that is the basis of current approximation methods. Professor Powell describes and analyses the main techniques of calculation supplying sufficient motivation throughout the book to make it accessible to scientists and engineers who require approximation methods for practical needs. Because the book is based on a course of lectures to third-year undergraduates in mathematics at Cambridge University, sufficient attention is given to theory to make it highly suitable as a mathematical textbook at undergraduate or postgraduate level.
Author | : A. Pinkus |
Publisher | : Springer |
Total Pages | : 312 |
Release | : 1985 |
Genre | : Language Arts & Disciplines |
ISBN | : |
My original introduction to this subject was through conservations, and ultimate ly joint work with C. A. Micchelli. I am grateful to him and to Profs. C. de Boor, E. W. Cheney, S. D. Fisher and A. A. Melkman who read various portions of the manuscript and whose suggestions were most helpful. Errors in accuracy and omissions are totally my responsibility. I would like to express my appreciation to the SERC of Great Britain and to the Department of Mathematics of the University of Lancaster for the year spent there during which large portions of the manuscript were written, and also to the European Research Office of the U.S. Army for its financial support of my research endeavors. Thanks are also due to Marion Marks who typed portions of the manuscript. Haifa, 1984 Allan Pinkus Table of Contents 1 Chapter I. Introduction . . . . . . . . Chapter II. Basic Properties of n-Widths . 9 1. Properties of d • • • • • • • • • • 9 n 15 2. Existence of Optimal Subspaces for d • n n 17 3. Properties of d • • • • • • 20 4. Properties of b • • • • • • n 5. Inequalities Between n-Widths 22 n 6. Duality Between d and d • • 27 n 7. n-Widths of Mappings of the Unit Ball 29 8. Some Relationships Between dn(T), dn(T) and bn(T) . 32 37 Notes and References . . . . . . . . . . . . . .
Author | : Nikolaĭ Pavlovich Korneĭchuk |
Publisher | : Cambridge University Press |
Total Pages | : 472 |
Release | : 1991-06-06 |
Genre | : Mathematics |
ISBN | : 9780521382342 |
This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are based on deep facts from analysis and function theory, such as duality theory and comparison theorems; these are presented in chapters 1 and 3. In keeping with the author's intention to make the book as self-contained as possible, chapter 2 contains an introduction to polynomial and spline approximation. Chapters 4 to 7 apply the theory to specific classes of functions. The last chapter deals with n-widths and generalises some of the ideas of the earlier chapters. Each chapter concludes with commentary, exercises and extensions of results. A substantial bibliography is included. Many of the results collected here have not been gathered together in book form before, so it will be essential reading for approximation theorists.
Author | : Andrei A. Gonchar |
Publisher | : Springer |
Total Pages | : 225 |
Release | : 2008-01-03 |
Genre | : Mathematics |
ISBN | : 3540477926 |
The book incorporates research papers and surveys written by participants ofan International Scientific Programme on Approximation Theory jointly supervised by Institute for Constructive Mathematics of University of South Florida at Tampa, USA and the Euler International Mathematical Instituteat St. Petersburg, Russia. The aim of the Programme was to present new developments in Constructive Approximation Theory. The topics of the papers are: asymptotic behaviour of orthogonal polynomials, rational approximation of classical functions, quadrature formulas, theory of n-widths, nonlinear approximation in Hardy algebras,numerical results on best polynomial approximations, wavelet analysis. FROM THE CONTENTS: E.A. Rakhmanov: Strong asymptotics for orthogonal polynomials associated with exponential weights on R.- A.L. Levin, E.B. Saff: Exact Convergence Rates for Best Lp Rational Approximation to the Signum Function and for Optimal Quadrature in Hp.- H. Stahl: Uniform Rational Approximation of x .- M. Rahman, S.K. Suslov: Classical Biorthogonal Rational Functions.- V.P. Havin, A. Presa Sague: Approximation properties of harmonic vector fields and differential forms.- O.G. Parfenov: Extremal problems for Blaschke products and N-widths.- A.J. Carpenter, R.S. Varga: Some Numerical Results on Best Uniform Polynomial Approximation of x on 0,1 .- J.S. Geronimo: Polynomials Orthogonal on the Unit Circle with Random Recurrence Coefficients.- S. Khrushchev: Parameters of orthogonal polynomials.- V.N. Temlyakov: The universality of the Fibonacci cubature formulas.
Author | : Alexander I. Stepanets |
Publisher | : Walter de Gruyter |
Total Pages | : 941 |
Release | : 2011-12-22 |
Genre | : Mathematics |
ISBN | : 3110195283 |
The key point of the monograph is the classification of periodic functions introduced by the author and developed methods that enable one to solve, within the framework of a common approach, traditional problems of approximation theory for large collections of periodic functions. The main results are fairly complete and are presented in the form of either exact or asymptotically exact equalities. The present monograph is, in many respects, a store of knowledge accumulated in approximation theory by the beginning of the third millennium and serving for its further development.
Author | : Dan Sloughter |
Publisher | : American Mathematical Soc. |
Total Pages | : 571 |
Release | : 2020-11-02 |
Genre | : Education |
ISBN | : 1470455889 |
Calculus from Approximation to Theory takes a fresh and innovative look at the teaching and learning of calculus. One way to describe calculus might be to say it is a suite of techniques that approximate curved things by flat things and through a limiting process applied to those approximations arrive at an exact answer. Standard approaches to calculus focus on that limiting process as the heart of the matter. This text places its emphasis on the approximating processes and thus illuminates the motivating ideas and makes clearer the scientific usefulness, indeed centrality, of the subject while paying careful attention to the theoretical foundations. Limits are defined in terms of sequences, the derivative is defined from the best affine approximation, and greater attention than usual is paid to numerical techniques and the order of an approximation. Access to modern computational tools is presumed throughout and the use of these tools is woven seamlessly into the exposition and problems. All of the central topics of a yearlong calculus course are covered, with the addition of treatment of difference equations, a chapter on the complex plane as the arena for motion in two dimensions, and a much more thorough and modern treatment of differential equations than is standard. Dan Sloughter is Emeritus Professor of Mathematics at Furman University with interests in probability, statistics, and the philosophy of mathematics and statistics. He has been involved in efforts to reform calculus instruction for decades and has published widely on that topic. This book, one of the results of that work, is very well suited for a yearlong introduction to calculus that focuses on ideas over techniques.
Author | : A.N. Parshin |
Publisher | : Springer Science & Business Media |
Total Pages | : 351 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 3662036444 |
This book is a survey of the most important directions of research in transcendental number theory. For readers with no specific background in transcendental number theory, the book provides both an overview of the basic concepts and techniques and also a guide to the most important results and references.
Author | : Edgard A. Pimentel |
Publisher | : Cambridge University Press |
Total Pages | : 203 |
Release | : 2022-09-29 |
Genre | : Mathematics |
ISBN | : 1009096664 |
A modern account of elliptic regularity theory, with a rigorous presentation of recent developments for fundamental models.
Author | : Angela Kunoth |
Publisher | : Springer |
Total Pages | : 325 |
Release | : 2018-09-20 |
Genre | : Mathematics |
ISBN | : 331994911X |
This book takes readers on a multi-perspective tour through state-of-the-art mathematical developments related to the numerical treatment of PDEs based on splines, and in particular isogeometric methods. A wide variety of research topics are covered, ranging from approximation theory to structured numerical linear algebra. More precisely, the book provides (i) a self-contained introduction to B-splines, with special focus on approximation and hierarchical refinement, (ii) a broad survey of numerical schemes for control problems based on B-splines and B-spline-type wavelets, (iii) an exhaustive description of methods for computing and analyzing the spectral distribution of discretization matrices, and (iv) a detailed overview of the mathematical and implementational aspects of isogeometric analysis. The text is the outcome of a C.I.M.E. summer school held in Cetraro (Italy), July 2017, featuring four prominent lecturers with different theoretical and application perspectives. The book may serve both as a reference and an entry point into further research.