Probabilistic Forecasting and Bayesian Data Assimilation

Probabilistic Forecasting and Bayesian Data Assimilation
Author: Sebastian Reich
Publisher: Cambridge University Press
Total Pages: 308
Release: 2015-05-14
Genre: Computers
ISBN: 1316299422

In this book the authors describe the principles and methods behind probabilistic forecasting and Bayesian data assimilation. Instead of focusing on particular application areas, the authors adopt a general dynamical systems approach, with a profusion of low-dimensional, discrete-time numerical examples designed to build intuition about the subject. Part I explains the mathematical framework of ensemble-based probabilistic forecasting and uncertainty quantification. Part II is devoted to Bayesian filtering algorithms, from classical data assimilation algorithms such as the Kalman filter, variational techniques, and sequential Monte Carlo methods, through to more recent developments such as the ensemble Kalman filter and ensemble transform filters. The McKean approach to sequential filtering in combination with coupling of measures serves as a unifying mathematical framework throughout Part II. Assuming only some basic familiarity with probability, this book is an ideal introduction for graduate students in applied mathematics, computer science, engineering, geoscience and other emerging application areas.

Handbook of Probabilistic Models

Handbook of Probabilistic Models
Author: Pijush Samui
Publisher: Butterworth-Heinemann
Total Pages: 592
Release: 2019-10-05
Genre: Computers
ISBN: 0128165464

Handbook of Probabilistic Models carefully examines the application of advanced probabilistic models in conventional engineering fields. In this comprehensive handbook, practitioners, researchers and scientists will find detailed explanations of technical concepts, applications of the proposed methods, and the respective scientific approaches needed to solve the problem. This book provides an interdisciplinary approach that creates advanced probabilistic models for engineering fields, ranging from conventional fields of mechanical engineering and civil engineering, to electronics, electrical, earth sciences, climate, agriculture, water resource, mathematical sciences and computer sciences. Specific topics covered include minimax probability machine regression, stochastic finite element method, relevance vector machine, logistic regression, Monte Carlo simulations, random matrix, Gaussian process regression, Kalman filter, stochastic optimization, maximum likelihood, Bayesian inference, Bayesian update, kriging, copula-statistical models, and more. - Explains the application of advanced probabilistic models encompassing multidisciplinary research - Applies probabilistic modeling to emerging areas in engineering - Provides an interdisciplinary approach to probabilistic models and their applications, thus solving a wide range of practical problems

Statistical Postprocessing of Ensemble Forecasts

Statistical Postprocessing of Ensemble Forecasts
Author: Stéphane Vannitsem
Publisher: Elsevier
Total Pages: 364
Release: 2018-05-17
Genre: Science
ISBN: 012812248X

Statistical Postprocessing of Ensemble Forecasts brings together chapters contributed by international subject-matter experts describing the current state of the art in the statistical postprocessing of ensemble forecasts. The book illustrates the use of these methods in several important applications including weather, hydrological and climate forecasts, and renewable energy forecasting. After an introductory section on ensemble forecasts and prediction systems, the second section of the book is devoted to exposition of the methods available for statistical postprocessing of ensemble forecasts: univariate and multivariate ensemble postprocessing are first reviewed by Wilks (Chapters 3), then Schefzik and Möller (Chapter 4), and the more specialized perspective necessary for postprocessing forecasts for extremes is presented by Friederichs, Wahl, and Buschow (Chapter 5). The second section concludes with a discussion of forecast verification methods devised specifically for evaluation of ensemble forecasts (Chapter 6 by Thorarinsdottir and Schuhen). The third section of this book is devoted to applications of ensemble postprocessing. Practical aspects of ensemble postprocessing are first detailed in Chapter 7 (Hamill), including an extended and illustrative case study. Chapters 8 (Hemri), 9 (Pinson and Messner), and 10 (Van Schaeybroeck and Vannitsem) discuss ensemble postprocessing specifically for hydrological applications, postprocessing in support of renewable energy applications, and postprocessing of long-range forecasts from months to decades. Finally, Chapter 11 (Messner) provides a guide to the ensemble-postprocessing software available in the R programming language, which should greatly help readers implement many of the ideas presented in this book. Edited by three experts with strong and complementary expertise in statistical postprocessing of ensemble forecasts, this book assesses the new and rapidly developing field of ensemble forecast postprocessing as an extension of the use of statistical corrections to traditional deterministic forecasts. Statistical Postprocessing of Ensemble Forecasts is an essential resource for researchers, operational practitioners, and students in weather, seasonal, and climate forecasting, as well as users of such forecasts in fields involving renewable energy, conventional energy, hydrology, environmental engineering, and agriculture. - Consolidates, for the first time, the methodologies and applications of ensemble forecasts in one succinct place - Provides real-world examples of methods used to formulate forecasts - Presents the tools needed to make the best use of multiple model forecasts in a timely and efficient manner

Forecasting with Exponential Smoothing

Forecasting with Exponential Smoothing
Author: Rob Hyndman
Publisher: Springer Science & Business Media
Total Pages: 362
Release: 2008-06-19
Genre: Mathematics
ISBN: 3540719180

Exponential smoothing methods have been around since the 1950s, and are still the most popular forecasting methods used in business and industry. However, a modeling framework incorporating stochastic models, likelihood calculation, prediction intervals and procedures for model selection, was not developed until recently. This book brings together all of the important new results on the state space framework for exponential smoothing. It will be of interest to people wanting to apply the methods in their own area of interest as well as for researchers wanting to take the ideas in new directions. Part 1 provides an introduction to exponential smoothing and the underlying models. The essential details are given in Part 2, which also provide links to the most important papers in the literature. More advanced topics are covered in Part 3, including the mathematical properties of the models and extensions of the models for specific problems. Applications to particular domains are discussed in Part 4.

Practical Probabilistic Programming

Practical Probabilistic Programming
Author: Avi Pfeffer
Publisher: Simon and Schuster
Total Pages: 650
Release: 2016-03-29
Genre: Computers
ISBN: 1638352372

Summary Practical Probabilistic Programming introduces the working programmer to probabilistic programming. In it, you'll learn how to use the PP paradigm to model application domains and then express those probabilistic models in code. Although PP can seem abstract, in this book you'll immediately work on practical examples, like using the Figaro language to build a spam filter and applying Bayesian and Markov networks, to diagnose computer system data problems and recover digital images. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology The data you accumulate about your customers, products, and website users can help you not only to interpret your past, it can also help you predict your future! Probabilistic programming uses code to draw probabilistic inferences from data. By applying specialized algorithms, your programs assign degrees of probability to conclusions. This means you can forecast future events like sales trends, computer system failures, experimental outcomes, and many other critical concerns. About the Book Practical Probabilistic Programming introduces the working programmer to probabilistic programming. In this book, you’ll immediately work on practical examples like building a spam filter, diagnosing computer system data problems, and recovering digital images. You’ll discover probabilistic inference, where algorithms help make extended predictions about issues like social media usage. Along the way, you’ll learn to use functional-style programming for text analysis, object-oriented models to predict social phenomena like the spread of tweets, and open universe models to gauge real-life social media usage. The book also has chapters on how probabilistic models can help in decision making and modeling of dynamic systems. What's Inside Introduction to probabilistic modeling Writing probabilistic programs in Figaro Building Bayesian networks Predicting product lifecycles Decision-making algorithms About the Reader This book assumes no prior exposure to probabilistic programming. Knowledge of Scala is helpful. About the Author Avi Pfeffer is the principal developer of the Figaro language for probabilistic programming. Table of Contents PART 1 INTRODUCING PROBABILISTIC PROGRAMMING AND FIGARO Probabilistic programming in a nutshell A quick Figaro tutorial Creating a probabilistic programming application PART 2 WRITING PROBABILISTIC PROGRAMS Probabilistic models and probabilistic programs Modeling dependencies with Bayesian and Markov networks Using Scala and Figaro collections to build up models Object-oriented probabilistic modeling Modeling dynamic systems PART 3 INFERENCE The three rules of probabilistic inference Factored inference algorithms Sampling algorithms Solving other inference tasks Dynamic reasoning and parameter learning

Developments in Demographic Forecasting

Developments in Demographic Forecasting
Author: Stefano Mazzuco
Publisher: Springer Nature
Total Pages: 261
Release: 2020-09-28
Genre: Social Science
ISBN: 3030424723

This open access book presents new developments in the field of demographic forecasting, covering both mortality, fertility and migration. For each component emerging methods to forecast them are presented. Moreover, instruments for forecasting evaluation are provided. Bayesian models, nonparametric models, cohort approaches, elicitation of expert opinion, evaluation of probabilistic forecasts are some of the topics covered in the book. In addition, the book is accompanied by complementary material on the web allowing readers to practice with some of the ideas exposed in the book. Readers are encouraged to use this material to apply the new methods to their own data. The book is an important read for demographers, applied statisticians, as well as other social scientists interested or active in the field of population forecasting. Professional population forecasters in statistical agencies will find useful new ideas in various chapters.

Density Estimation for Statistics and Data Analysis

Density Estimation for Statistics and Data Analysis
Author: Bernard. W. Silverman
Publisher: Routledge
Total Pages: 176
Release: 2018-02-19
Genre: Mathematics
ISBN: 1351456172

Although there has been a surge of interest in density estimation in recent years, much of the published research has been concerned with purely technical matters with insufficient emphasis given to the technique's practical value. Furthermore, the subject has been rather inaccessible to the general statistician. The account presented in this book places emphasis on topics of methodological importance, in the hope that this will facilitate broader practical application of density estimation and also encourage research into relevant theoretical work. The book also provides an introduction to the subject for those with general interests in statistics. The important role of density estimation as a graphical technique is reflected by the inclusion of more than 50 graphs and figures throughout the text. Several contexts in which density estimation can be used are discussed, including the exploration and presentation of data, nonparametric discriminant analysis, cluster analysis, simulation and the bootstrap, bump hunting, projection pursuit, and the estimation of hazard rates and other quantities that depend on the density. This book includes general survey of methods available for density estimation. The Kernel method, both for univariate and multivariate data, is discussed in detail, with particular emphasis on ways of deciding how much to smooth and on computation aspects. Attention is also given to adaptive methods, which smooth to a greater degree in the tails of the distribution, and to methods based on the idea of penalized likelihood.

Probabilistic Forecasts and Optimal Decisions

Probabilistic Forecasts and Optimal Decisions
Author: Roman Krzysztofowicz
Publisher: John Wiley & Sons
Total Pages: 581
Release: 2025-02-03
Genre: Technology & Engineering
ISBN: 139422186X

Account for uncertainties and optimize decision-making with this thorough exposition Decision theory is a body of thought and research seeking to apply a mathematical-logical framework to assessing probability and optimizing decision-making. It has developed robust tools for addressing all major challenges to decision making. Yet the number of variables and uncertainties affecting each decision outcome, many of them beyond the decider's control, mean that decision-making is far from a “solved problem”. The tools created by decision theory remain to be refined and applied to decisions in which uncertainties are prominent. Probabilistic Forecasts and Optimal Decisions introduces a theoretically-grounded methodology for optimizing decision-making under conditions of uncertainty. Beginning with an overview of the basic elements of probability theory and methods for modeling continuous variates, it proceeds to survey the mathematics of both continuous and discrete models, supporting each with key examples. The result is a crucial window into the complex but enormously rewarding world of decision theory. Probabilistic Forecasts and Optimal Decisions readers will also find: Extended case studies supported with real-world data Mini-projects running through multiple chapters to illustrate different stages of the decision-making process End of chapter exercises designed to facilitate student learning Probabilistic Forecasts and Optimal Decisions is ideal for advanced undergraduate and graduate students in the sciences and engineering, as well as predictive analytics and decision analytics professionals.

Probabilistic Forecasting and Bayesian Data Assimilation

Probabilistic Forecasting and Bayesian Data Assimilation
Author: Sebastian Reich
Publisher: Cambridge University Press
Total Pages: 308
Release: 2015-05-14
Genre: Computers
ISBN: 1107069394

This book covers key ideas and concepts. It is an ideal introduction for graduate students in any field where Bayesian data assimilation is applied.

Ensemble Forecasting Applied to Power Systems

Ensemble Forecasting Applied to Power Systems
Author: Antonio Bracale
Publisher: MDPI
Total Pages: 134
Release: 2020-03-10
Genre: Technology & Engineering
ISBN: 303928312X

Modern power systems are affected by many sources of uncertainty, driven by the spread of renewable generation, by the development of liberalized energy market systems and by the intrinsic random behavior of the final energy customers. Forecasting is, therefore, a crucial task in planning and managing modern power systems at any level: from transmission to distribution networks, and in also the new context of smart grids. Recent trends suggest the suitability of ensemble approaches in order to increase the versatility and robustness of forecasting systems. Stacking, boosting, and bagging techniques have recently started to attract the interest of power system practitioners. This book addresses the development of new, advanced, ensemble forecasting methods applied to power systems, collecting recent contributions to the development of accurate forecasts of energy-related variables by some of the most qualified experts in energy forecasting. Typical areas of research (renewable energy forecasting, load forecasting, energy price forecasting) are investigated, with relevant applications to the use of forecasts in energy management systems.