Applied Formal Verification

Applied Formal Verification
Author: Douglas L. Perry
Publisher: McGraw Hill Professional
Total Pages: 259
Release: 2005-05-10
Genre: Technology & Engineering
ISBN: 0071588892

Formal verification is a powerful new digital design method. In this cutting-edge tutorial, two of the field's best known authors team up to show designers how to efficiently apply Formal Verification, along with hardware description languages like Verilog and VHDL, to more efficiently solve real-world design problems. Contents: Simulation-Based Verification * Introduction to Formal Techniques * Contrasting Simulation vs. Formal Techniques * Developing a Formal Test Plan * Writing High-Level Requirements * Proving High-Level Requirements * System Level Simulation * Design Example * Formal Test Plan * Final System Simulation

Finding Your Way Through Formal Verification

Finding Your Way Through Formal Verification
Author: Bernard Murphy
Publisher: Createspace Independent Publishing Platform
Total Pages: 134
Release: 2018-03-06
Genre:
ISBN: 9781986274111

There are already many books on formal verification, from academic to application-centric, and from tutorials for beginners to guides for advanced users. Many are excellent for their intended purpose; we recommend a few at the end of this book. But most start from the assumption that you have already committed to becoming a hands-on expert (or in some cases that you already are an expert). We feel that detailed tutorials are not the easiest place to extract the introductory view many of us are looking for - background, a general idea of how methods work, applications and how formal verification is managed in the overall verification objective. Since we're writing for a fairly wide audience, we cover some topics that some of you may consider elementary (why verification is hard), some we hope will be of general interest (elementary understanding of the technology) and others that may not immediately interest some readers (setting up a formal verification team). What we intentionally do not cover at all is how to become a hands-on expert.

Formal Methods for Software Engineering

Formal Methods for Software Engineering
Author: Markus Roggenbach
Publisher: Springer Nature
Total Pages: 538
Release: 2022-06-22
Genre: Computers
ISBN: 303038800X

Software programs are formal entities with precise meanings independent of their programmers, so the transition from ideas to programs necessarily involves a formalisation at some point. The first part of this graduate-level introduction to formal methods develops an understanding of what constitutes formal methods and what their place is in Software Engineering. It also introduces logics as languages to describe reasoning and the process algebra CSP as a language to represent behaviours. The second part offers specification and testing methods for formal development of software, based on the modelling languages CASL and UML. The third part takes the reader into the application domains of normative documents, human machine interfaces, and security. Use of notations and formalisms is uniform throughout the book. Topics and features: Explains foundations, and introduces specification, verification, and testing methods Explores various application domains Presents realistic and practical examples, illustrating concepts Brings together contributions from highly experienced educators and researchers Offers modelling and analysis methods for formal development of software Suitable for graduate and undergraduate courses in software engineering, this uniquely practical textbook will also be of value to students in informatics, as well as to scientists and practical engineers, who want to learn about or work more effectively with formal theories and methods. Markus Roggenbach is a Professor in the Dept. of Computer Science of Swansea University. Antonio Cerone is an Associate Professor in the Dept. of Computer Science of Nazarbayev University, Nur-Sultan. Bernd-Holger Schlingloff is a Professor in the Institut für Informatik of Humboldt-Universität zu Berlin. Gerardo Schneider is a Professor in the Dept. of Computer Science and Engineering of University of Gothenburg. Siraj Ahmed Shaikh is a Professor in the Institute for Future Transport and Cities of Coventry University. The companion site for the book offers additional resources, including further material for selected chapters, prepared lab classes, a list of errata, slides and teaching material, and virtual machines with preinstalled tools and resources for hands-on experience with examples from the book. The URL is: https://sefm-book.github.io

Formal Verification

Formal Verification
Author: Erik Seligman
Publisher: Elsevier
Total Pages: 426
Release: 2023-05-27
Genre: Computers
ISBN: 0323956122

Formal Verification: An Essential Toolkit for Modern VLSI Design, Second Edition presents practical approaches for design and validation, with hands-on advice to help working engineers integrate these techniques into their work. Formal Verification (FV) enables a designer to directly analyze and mathematically explore the quality or other aspects of a Register Transfer Level (RTL) design without using simulations. This can reduce time spent validating designs and more quickly reach a final design for manufacturing. Building on a basic knowledge of SystemVerilog, this book demystifies FV and presents the practical applications that are bringing it into mainstream design and validation processes. New sections cover advanced techniques, and a new chapter, The Road To Formal Signoff, emphasizes techniques used when replacing simulation work with Formal Verification. After reading this book, readers will be prepared to introduce FV in their organization to effectively deploy FV techniques that increase design and validation productivity.

Formal Verification of Control System Software

Formal Verification of Control System Software
Author: Pierre-Loïc Garoche
Publisher: Princeton University Press
Total Pages: 230
Release: 2019-05-14
Genre: Mathematics
ISBN: 0691181306

An essential introduction to the analysis and verification of control system software The verification of control system software is critical to a host of technologies and industries, from aeronautics and medical technology to the cars we drive. The failure of controller software can cost people their lives. In this authoritative and accessible book, Pierre-Loïc Garoche provides control engineers and computer scientists with an indispensable introduction to the formal techniques for analyzing and verifying this important class of software. Too often, control engineers are unaware of the issues surrounding the verification of software, while computer scientists tend to be unfamiliar with the specificities of controller software. Garoche provides a unified approach that is geared to graduate students in both fields, covering formal verification methods as well as the design and verification of controllers. He presents a wealth of new verification techniques for performing exhaustive analysis of controller software. These include new means to compute nonlinear invariants, the use of convex optimization tools, and methods for dealing with numerical imprecisions such as floating point computations occurring in the analyzed software. As the autonomy of critical systems continues to increase—as evidenced by autonomous cars, drones, and satellites and landers—the numerical functions in these systems are growing ever more advanced. The techniques presented here are essential to support the formal analysis of the controller software being used in these new and emerging technologies.

Industrial-Strength Formal Methods in Practice

Industrial-Strength Formal Methods in Practice
Author: Michael G. Hinchey
Publisher: Springer Science & Business Media
Total Pages: 420
Release: 1999-09-17
Genre: Computers
ISBN: 9781852336400

"Aimed mainly at practitioners in software engineering and formal methods, this book will also be of interest to academic researchers working in formal methods, and students on advanced software engineering courses who need real-life specifications and examples on which to base their work."--Jacket.

Formal Hardware Verification

Formal Hardware Verification
Author: Thomas Kropf
Publisher: Springer Science & Business Media
Total Pages: 388
Release: 1997-08-27
Genre: Computers
ISBN: 9783540634751

This state-of-the-art monograph presents a coherent survey of a variety of methods and systems for formal hardware verification. It emphasizes the presentation of approaches that have matured into tools and systems usable for the actual verification of nontrivial circuits. All in all, the book is a representative and well-structured survey on the success and future potential of formal methods in proving the correctness of circuits. The various chapters describe the respective approaches supplying theoretical foundations as well as taking into account the application viewpoint. By applying all methods and systems presented to the same set of IFIP WG10.5 hardware verification examples, a valuable and fair analysis of the strenghts and weaknesses of the various approaches is given.

Applied Formal Methods - FM-Trends 98

Applied Formal Methods - FM-Trends 98
Author: Dieter Hutter
Publisher: Springer
Total Pages: 391
Release: 2007-07-21
Genre: Computers
ISBN: 3540482571

This volume contains the contributions presented at the International Workshop on Current Trends in Applied Formal Methods organized October 7-9, 1998, in Boppard, Germany. The main objective of the workshop was to draw a map of the key issues facing the practical application of formal methods in industry. This appears to be particularly timely with safety and security issues becoming a real obstacle to industrial software and hardware development. As a consequence, almost all major companies have now set up departments or groups to work with formal methods and many European countries face a severe labour shortage in this new field. Tony Hoare's prediction of the art of software (and hardware) development becoming a proper engineering science with its own body of tools and techniques is now becoming a reality. So the focus of this application oriented workshop was not so much on spe cial academic topics but rather on the many practical aspects of this emerging new technology: verification and validation, and tool support and integration into the software life-cycle. By evaluating the state of the art with respect to industrial applications a discussion emerged among scientists, practising engi neers, and members of regulatory and funding agencies about future needs and developments. This discussion lead to roadmaps with respect to the future of this field, to tool support, and potential application areas and promising market segments. The contributions of the participants from industry as well as from the respective national security bureaus were particularly valuable and highly appreciated.

Formal Verification of Floating-Point Hardware Design

Formal Verification of Floating-Point Hardware Design
Author: David M. Russinoff
Publisher: Springer
Total Pages: 388
Release: 2018-10-13
Genre: Technology & Engineering
ISBN: 3319955136

This is the first book to focus on the problem of ensuring the correctness of floating-point hardware designs through mathematical methods. Formal Verification of Floating-Point Hardware Design advances a verification methodology based on a unified theory of register-transfer logic and floating-point arithmetic that has been developed and applied to the formal verification of commercial floating-point units over the course of more than two decades, during which the author was employed by several major microprocessor design companies. The book consists of five parts, the first two of which present a rigorous exposition of the general theory based on the first principles of arithmetic. Part I covers bit vectors and the bit manipulation primitives, integer and fixed-point encodings, and bit-wise logical operations. Part II addresses the properties of floating-point numbers, the formats in which they are encoded as bit vectors, and the various modes of floating-point rounding. In Part III, the theory is extended to the analysis of several algorithms and optimization techniques that are commonly used in commercial implementations of elementary arithmetic operations. As a basis for the formal verification of such implementations, Part IV contains high-level specifications of correctness of the basic arithmetic instructions of several major industry-standard floating-point architectures, including all details pertaining to the handling of exceptional conditions. Part V illustrates the methodology, applying the preceding theory to the comprehensive verification of a state-of-the-art commercial floating-point unit. All of these results have been formalized in the logic of the ACL2 theorem prover and mechanically checked to ensure their correctness. They are presented here, however, in simple conventional mathematical notation. The book presupposes no familiarity with ACL2, logic design, or any mathematics beyond basic high school algebra. It will be of interest to verification engineers as well as arithmetic circuit designers who appreciate the value of a rigorous approach to their art, and is suitable as a graduate text in computer arithmetic.

Systems and Software Verification

Systems and Software Verification
Author: B. Berard
Publisher: Springer Science & Business Media
Total Pages: 188
Release: 2013-04-17
Genre: Computers
ISBN: 3662045583

Model checking is a powerful approach for the formal verification of software. It automatically provides complete proofs of correctness, or explains, via counter-examples, why a system is not correct. Here, the author provides a well written and basic introduction to the new technique. The first part describes in simple terms the theoretical basis of model checking: transition systems as a formal model of systems, temporal logic as a formal language for behavioral properties, and model-checking algorithms. The second part explains how to write rich and structured temporal logic specifications in practice, while the third part surveys some of the major model checkers available.