Applications Of Analytical Techniques To The Characterization Of Materials
Download Applications Of Analytical Techniques To The Characterization Of Materials full books in PDF, epub, and Kindle. Read online free Applications Of Analytical Techniques To The Characterization Of Materials ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : D.L. Perry |
Publisher | : Springer Science & Business Media |
Total Pages | : 206 |
Release | : 1992-03-31 |
Genre | : Science |
ISBN | : 9780306441899 |
Over the last several years, the field of materials science has witnessed an explosion of new, advanced materials. They encompass many uses and include superconductors, alloys, glasses, and catalysts. Not only are there quite a number of new enhies into these generic classes of materials, but the materials themselves represent a wide array of physical forms as well. Bulk materials, for example, are being synthesized and applica tions found for them, while still other materials are being synthesized as thin films for yet still more new (and in some cases, as yet unknown) applications. The field continues to expand with (thankfully!) no end in sight as to the number of new possibilities. As work progresses in this area, there is an ever increasing demand for knowing not only what material is formed as an end product but also details of the route by which it is made. The knowledge of reaction mechanisms in their synthesis many times allows a researcher to tailor a preparative scheme to either arrive at the final product in a purer state or with a better yield. Also, a good fundamental experimental knowledge of impuri ties present in the final material helps the investigator get more insight into making it.
Author | : John O'Connor |
Publisher | : Springer Science & Business Media |
Total Pages | : 626 |
Release | : 2003-04-23 |
Genre | : Science |
ISBN | : 9783540413301 |
This guide to the use of surface analysis techniques, now in its second edition, has expanded to include more techniques, current applications and updated references. It outlines the application of surface analysis techniques to a broad range of studies in materials science and engineering. The book consists of three parts: an extensive introduction to the concepts of surface structure and composition, a techniques section describing 19 techniques and a section on applications. This book is aimed at industrial scientists and engineers in research and development. The level and content of this book make it ideal as a course text for senior undergraduate and postgraduate students in materials science, materials engineering, physics, chemistry and metallurgy.
Author | : Bhim Prasad Kaflé |
Publisher | : Elsevier |
Total Pages | : 314 |
Release | : 2019-11-29 |
Genre | : Science |
ISBN | : 0128148675 |
Chemical Analysis and Material Characterization by Spectrophotometry integrates and presents the latest known information and examples from the most up-to-date literature on the use of this method for chemical analysis or materials characterization. Accessible to various levels of expertise, everyone from students, to practicing analytical and industrial chemists, the book covers both the fundamentals of spectrophotometry and instrumental procedures for quantitative analysis with spectrophotometric techniques. It contains a wealth of examples and focuses on the latest research, such as the investigation of optical properties of nanomaterials and thin solid films. - Covers the basic analytical theory that is essential for understanding spectrophotometry - Emphasizes minor/trace chemical component analysis - Includes the spectrophotometric analysis of nanomaterials and thin solid films - Thoroughly describes methods and uses easy-to-follow, practical examples and experiments
Author | : Sam Zhang |
Publisher | : CRC Press |
Total Pages | : 344 |
Release | : 2008-12-22 |
Genre | : Science |
ISBN | : 1420042955 |
Experts must be able to analyze and distinguish all materials, or combinations of materials, in use today-whether they be metals, ceramics, polymers, semiconductors, or composites. To understand a material's structure, how that structure determines its properties, and how that material will subsequently work in technological applications, researche
Author | : John P. Sibilia |
Publisher | : John Wiley & Sons |
Total Pages | : 404 |
Release | : 1996-12-17 |
Genre | : Science |
ISBN | : 9780471186335 |
Written both for the novice and for the experienced scientist, this miniature encyclopedia concisely describes over one hundred materials methodologies, including evaluation, chemical analysis, and physical testing techniques. Each technique is presented in terms of its use, sample requirements, and the engineering principles behind its methodology. Real life industrial and academic applications are also described to give the reader an understanding of the significance and utilization of technique. There is also a discussion of the limitations of each technique.
Author | : Damia Barcelo |
Publisher | : Elsevier |
Total Pages | : 1151 |
Release | : 2000-03-08 |
Genre | : Science |
ISBN | : 0080540694 |
This book is an updated, completely revised version of a previous volume in this series entitled: ENVIRONMENTAL ANALYSIS -- Techniques, applications and quality assurance. The book treats different aspects of environmental analysis such as sample handling and analytical techniques, the applications to trace analysis of pollutants (mainly organic compounds), and quality assurance aspects, including the use of certified reference materials for the quality control of the whole analytical process. New analytical techniques are presented that have been developed significantly over the last 6 years, like solid phase microextraction, microwave-assisted extraction, liquid chromatography-mass spectrometric methods, immunoassays, and biosensors. The book is divided into four sections. The first describes field sampling techniques and sample preparation in environmental matrices: water, soil, sediment and biota. The second section covers the application areas which are either based on techniques, like the use of gas chromatography-atomic emission detection, immunoassays, or coupled-column liquid chromatography, or on specific application areas, like chlorinated compounds, pesticides, phenols, mycotoxins, phytotoxins, radionuclides, industrial effluents and wastes, including mine waste. Validation and quality assurance are described in the third section, together with the interpretation of environmental data using advanced chemometric techniques. The final section reports the use of somewhat advanced analytical methods, usually more expensive, less routinely used or less developed, for the determination of pollutants.
Author | : J. W. Martin |
Publisher | : Elsevier |
Total Pages | : 235 |
Release | : 2003-10-31 |
Genre | : Science |
ISBN | : 0080535577 |
* Expert, up-to-date guidance on the appropriate techniques of local chemical analysis * Comprehensive. This volume is an ideal starting point for material research and development, bringing together a number of techniques usually only found in isolation * Recent examples of the applications of techniques are provided in all cases Helping to solve the problems of materials scientists in academia and industry, this book offers guidance on appropriate techniques of chemical analysis of materials at the local level, down to the atomic scale. Comparisons are made between various techniques in terms of the nature of the probe employed. The detection limit and the optimum spatial resolution is also considered, as well as the range of atomic number that may be identified and the precision and methods of calibration, where appropriate. The Local Chemical Analysis of Materials is amply illustrated allowing the reader to easily see typical results. It includes a comparative table of techniques to aid selection for analysis and a table of acronyms, particularly valuable in this jargon-riddled area.
Author | : Surender Kumar Sharma |
Publisher | : Springer |
Total Pages | : 612 |
Release | : 2018-09-18 |
Genre | : Technology & Engineering |
ISBN | : 3319929550 |
This book focuses on the widely used experimental techniques available for the structural, morphological, and spectroscopic characterization of materials. Recent developments in a wide range of experimental techniques and their application to the quantification of materials properties are an essential side of this book. Moreover, it provides concise but thorough coverage of the practical and theoretical aspects of the analytical techniques used to characterize a wide variety of functional nanomaterials. The book provides an overview of widely used characterization techniques for a broad audience: from beginners and graduate students, to advanced specialists in both academia and industry.
Author | : Alexander Ziegler |
Publisher | : Springer Science & Business Media |
Total Pages | : 265 |
Release | : 2014-04-01 |
Genre | : Science |
ISBN | : 3642451527 |
The behavior of nanoscale materials can change rapidly with time either because the environment changes rapidly or because the influence of the environment propagates quickly across the intrinsically small dimensions of nanoscale materials. Extremely fast time resolution studies using X-rays, electrons and neutrons are of very high interest to many researchers and is a fast-evolving and interesting field for the study of dynamic processes. Therefore, in situ structural characterization and measurements of structure-property relationships covering several decades of length and time scales (from atoms to millimeters and femtoseconds to hours) with high spatial and temporal resolutions are crucially important to understand the synthesis and behavior of multidimensional materials. The techniques described in this book will permit access to the real-time dynamics of materials, surface processes and chemical and biological reactions at various time scales. This book provides an interdisciplinary reference for research using in situ techniques to capture the real-time structural and property responses of materials to surrounding fields using electron, optical and x-ray microscopies (e.g. scanning, transmission and low-energy electron microscopy and scanning probe microscopy) or in the scattering realm with x-ray, neutron and electron diffraction.
Author | : Anette Müllertz |
Publisher | : Springer |
Total Pages | : 829 |
Release | : 2016-08-30 |
Genre | : Medical |
ISBN | : 1493940295 |
The aim of this book is to present a range of analytical methods that can be used in formulation design and development and focus on how these systems can be applied to understand formulation components and the dosage form these build. To effectively design and exploit drug delivery systems, the underlying characteristic of a dosage form must be understood--from the characteristics of the individual formulation components, to how they act and interact within the formulation, and finally, to how this formulation responds in different biological environments. To achieve this, there is a wide range of analytical techniques that can be adopted to understand and elucidate the mechanics of drug delivery and drug formulation. Such methods include e.g. spectroscopic analysis, diffractometric analysis, thermal investigations, surface analytical techniques, particle size analysis, rheological techniques, methods to characterize drug stability and release, and biological analysis in appropriate cell and animal models. Whilst each of these methods can encompass a full research area in their own right, formulation scientists must be able to effectively apply these methods to the delivery system they are considering. The information in this book is designed to support researchers in their ability to fully characterize and analyze a range of delivery systems, using an appropriate selection of analytical techniques. Due to its consideration of regulatory approval, this book will also be suitable for industrial researchers both at early stage up to pre-clinical research.