Applications in Physics, Part A

Applications in Physics, Part A
Author: Vasily E. Tarasov
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 314
Release: 2019-02-19
Genre: Mathematics
ISBN: 3110571706

This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This fourth volume collects authoritative chapters covering several applications of fractional calculus in physics, including classical and continuum mechanics.

Differential Geometry with Applications to Mechanics and Physics

Differential Geometry with Applications to Mechanics and Physics
Author: Yves Talpaert
Publisher: CRC Press
Total Pages: 480
Release: 2000-09-12
Genre: Mathematics
ISBN: 9780824703851

An introduction to differential geometry with applications to mechanics and physics. It covers topology and differential calculus in banach spaces; differentiable manifold and mapping submanifolds; tangent vector space; tangent bundle, vector field on manifold, Lie algebra structure, and one-parameter group of diffeomorphisms; exterior differential forms; Lie derivative and Lie algebra; n-form integration on n-manifold; Riemann geometry; and more. It includes 133 solved exercises.

Fluid Dynamics in Physics, Engineering and Environmental Applications

Fluid Dynamics in Physics, Engineering and Environmental Applications
Author: Jaime Klapp
Publisher: Springer Science & Business Media
Total Pages: 528
Release: 2012-10-14
Genre: Science
ISBN: 3642277225

The book contains invited lectures and selected contributions presented at the Enzo Levi and XVII Annual Meeting of the Fluid Dynamic Division of the Mexican Physical Society in 2011. It is aimed to fourth year undergraduate and graduate students, and scientists in the field of physics, engineering and chemistry that have interest in Fluid Dynamics from the experimental and theoretical point of view. The invited lectures are introductory and avoid the use of complicate mathematics. The other selected contributions are also adequate to fourth year undergraduate and graduate students. The Fluid Dynamics applications include multiphase flow, convection, diffusion, heat transfer, rheology, granular material, viscous flow, porous media flow, geophysics and astrophysics. The material contained in the book includes recent advances in experimental and theoretical fluid dynamics and is adequate for both teaching and research.

Applications Of Fractional Calculus In Physics

Applications Of Fractional Calculus In Physics
Author: Rudolf Hilfer
Publisher: World Scientific
Total Pages: 473
Release: 2000-03-02
Genre: Science
ISBN: 9814496200

Fractional calculus is a collection of relatively little-known mathematical results concerning generalizations of differentiation and integration to noninteger orders. While these results have been accumulated over centuries in various branches of mathematics, they have until recently found little appreciation or application in physics and other mathematically oriented sciences. This situation is beginning to change, and there are now a growing number of research areas in physics which employ fractional calculus.This volume provides an introduction to fractional calculus for physicists, and collects easily accessible review articles surveying those areas of physics in which applications of fractional calculus have recently become prominent.

Generalized Calculus with Applications to Matter and Forces

Generalized Calculus with Applications to Matter and Forces
Author: Luis Manuel Braga de Costa Campos
Publisher: CRC Press
Total Pages: 888
Release: 2014-04-18
Genre: Mathematics
ISBN: 1420071157

Combining mathematical theory, physical principles, and engineering problems, Generalized Calculus with Applications to Matter and Forces examines generalized functions, including the Heaviside unit jump and the Dirac unit impulse and its derivatives of all orders, in one and several dimensions. The text introduces the two main approaches to generalized functions: (1) as a nonuniform limit of a family of ordinary functions, and (2) as a functional over a set of test functions from which properties are inherited. The second approach is developed more extensively to encompass multidimensional generalized functions whose arguments are ordinary functions of several variables. As part of a series of books for engineers and scientists exploring advanced mathematics, Generalized Calculus with Applications to Matter and Forces presents generalized functions from an applied point of view, tackling problem classes such as: Gauss and Stokes’ theorems in the differential geometry, tensor calculus, and theory of potential fields Self-adjoint and non-self-adjoint problems for linear differential equations and nonlinear problems with large deformations Multipolar expansions and Green’s functions for elastic strings and bars, potential and rotational flow, electro- and magnetostatics, and more This third volume in the series Mathematics and Physics for Science and Technology is designed to complete the theory of functions and its application to potential fields, relating generalized functions to broader follow-on topics like differential equations. Featuring step-by-step examples with interpretations of results and discussions of assumptions and their consequences, Generalized Calculus with Applications to Matter and Forces enables readers to construct mathematical–physical models suited to new observations or novel engineering devices.

Differential Topology and Geometry with Applications to Physics

Differential Topology and Geometry with Applications to Physics
Author: Eduardo Nahmad-Achar
Publisher:
Total Pages: 0
Release: 2018
Genre: Geometry, Differential
ISBN: 9780750320726

"Differential geometry has encountered numerous applications in physics. More and more physical concepts can be understood as a direct consequence of geometric principles. The mathematical structure of Maxwell's electrodynamics, of the general theory of relativity, of string theory, and of gauge theories, to name but a few, are of a geometric nature. All of these disciplines require a curved space for the description of a system, and we require a mathematical formalism that can handle the dynamics in such spaces if we wish to go beyond a simple and superficial discussion of physical relationships. This formalism is precisely differential geometry. Even areas like thermodynamics and fluid mechanics greatly benefit from a differential geometric treatment. Not only in physics, but in important branches of mathematics has differential geometry effected important changes. Aimed at graduate students and requiring only linear algebra and differential and integral calculus, this book presents, in a concise and direct manner, the appropriate mathematical formalism and fundamentals of differential topology and differential geometry together with essential applications in many branches of physics." -- Prové de l'editor.

Applied Functional Analysis

Applied Functional Analysis
Author: Eberhard Zeidler
Publisher: Springer Science & Business Media
Total Pages: 503
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461208157

The first part of a self-contained, elementary textbook, combining linear functional analysis, nonlinear functional analysis, numerical functional analysis, and their substantial applications with each other. As such, the book addresses undergraduate students and beginning graduate students of mathematics, physics, and engineering who want to learn how functional analysis elegantly solves mathematical problems which relate to our real world. Applications concern ordinary and partial differential equations, the method of finite elements, integral equations, special functions, both the Schroedinger approach and the Feynman approach to quantum physics, and quantum statistics. As a prerequisite, readers should be familiar with some basic facts of calculus. The second part has been published under the title, Applied Functional Analysis: Main Principles and Their Applications.

Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos
Author: Steven H. Strogatz
Publisher: CRC Press
Total Pages: 532
Release: 2018-05-04
Genre: Mathematics
ISBN: 0429961111

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.

Applications of the Theory of Groups in Mechanics and Physics

Applications of the Theory of Groups in Mechanics and Physics
Author: Petre P. Teodorescu
Publisher: Springer Science & Business Media
Total Pages: 455
Release: 2004-04-30
Genre: Mathematics
ISBN: 1402020473

The notion of group is fundamental in our days, not only in mathematics, but also in classical mechanics, electromagnetism, theory of relativity, quantum mechanics, theory of elementary particles, etc. This notion has developed during a century and this development is connected with the names of great mathematicians as E. Galois, A. L. Cauchy, C. F. Gauss, W. R. Hamilton, C. Jordan, S. Lie, E. Cartan, H. Weyl, E. Wigner, and of many others. In mathematics, as in other sciences, the simple and fertile ideas make their way with difficulty and slowly; however, this long history would have been of a minor interest, had the notion of group remained connected only with rather restricted domains of mathematics, those in which it occurred at the beginning. But at present, groups have invaded almost all mathematical disciplines, mechanics, the largest part of physics, of chemistry, etc. We may say, without exaggeration, that this is the most important idea that occurred in mathematics since the invention of infinitesimal calculus; indeed, the notion of group expresses, in a precise and operational form, the vague and universal ideas of regularity and symmetry. The notion of group led to a profound understanding of the character of the laws which govern natural phenomena, permitting to formulate new laws, correcting certain inadequate formulations and providing unitary and non contradictory formulations for the investigated phenomena.

Physics of Continuous Media

Physics of Continuous Media
Author: Grigory Vekstein
Publisher: CRC Press
Total Pages: 208
Release: 1992-01-01
Genre: Science
ISBN: 9780750301411

Physics of Continuous Media: A Collection of Problems with Solutions for Physics Students contains a set of problems with detailed and rigorous solutions. Aimed at undergraduate and postgraduate students in physics and applied mathematics, the book is a complementary text for standard courses on the physics of continuous media. With its assortment of standard problems for beginners, variations on a theme, and original problems based on new trends and theories in the physics under investigation, this book aids in the understanding of practical aspects of the subject. Topics discussed include vectors, tensors, and Fourier transformations; dielectric waves in media; natural optical activity; Cherenkov radiation; nonlinear interaction of waves; dynamics of ideal fluids and the motion of viscous fluids; convection; turbulence and acoustic and shock waves; the theory of elasticity; and the mechanics of liquid crystals.