The Finite Difference Time Domain Method for Electromagnetics

The Finite Difference Time Domain Method for Electromagnetics
Author: Karl S. Kunz
Publisher: Routledge
Total Pages: 466
Release: 2018-05-04
Genre: Science
ISBN: 1351410474

The Finite-Difference Time-domain (FDTD) method allows you to compute electromagnetic interaction for complex problem geometries with ease. The simplicity of the approach coupled with its far-reaching usefulness, create the powerful, popular method presented in The Finite Difference Time Domain Method for Electromagnetics. This volume offers timeless applications and formulations you can use to treat virtually any material type and geometry. The Finite Difference Time Domain Method for Electromagnetics explores the mathematical foundations of FDTD, including stability, outer radiation boundary conditions, and different coordinate systems. It covers derivations of FDTD for use with PEC, metal, lossy dielectrics, gyrotropic materials, and anisotropic materials. A number of applications are completely worked out with numerous figures to illustrate the results. It also includes a printed FORTRAN 77 version of the code that implements the technique in three dimensions for lossy dielectric materials. There are many methods for analyzing electromagnetic interactions for problem geometries. With The Finite Difference Time Domain Method for Electromagnetics, you will learn the simplest, most useful of these methods, from the basics through to the practical applications.

Government Reports Annual Index

Government Reports Annual Index
Author:
Publisher:
Total Pages: 1828
Release: 1994
Genre: Research
ISBN:

Sections 1-2. Keyword Index.--Section 3. Personal author index.--Section 4. Corporate author index.-- Section 5. Contract/grant number index, NTIS order/report number index 1-E.--Section 6. NTIS order/report number index F-Z.

Complex Electromagnetic Problems and Numerical Simulation Approaches

Complex Electromagnetic Problems and Numerical Simulation Approaches
Author: Levent Sevgi
Publisher: John Wiley & Sons
Total Pages: 412
Release: 2003-06-10
Genre: Science
ISBN: 9780471430629

Today, engineering problems are very complex, requiring powerful computer simulations to power them. For engineers, observable-based parameterization as well as numerically computable formsâ??with rapid convergent properties if in a seriesâ??are essential. Complex Electromagnetic Problems and Numerical Simulation Approaches, along with its companion FTP site, will show you how to take on complex electromagnetic problems and solve them in an accurate and efficient manner. Organized into two distinct parts, this comprehensive resource first introduces you to the concepts, approaches, and numerical simulation techniques that will be used throughout the book and then, in Part II, offers step-by-step guidance as to their practical, real-world applications. Self-contained chapters will enable you to find specific solutions to numerous problems. Filled with in-depth insight and expert advice, Complex Electromagnetic Problems and Numerical Simulation Approaches: Describes ground wave propagation Examines antenna systems Deals with radar cross section (RCS) modeling Explores microstrip network design with FDTD and TLM techniques Discusses electromagnetic compatibility (EMC) and bio-electromagnetics (BEM) modeling Presents radar simulation Whether you're a professional electromagnetic engineer requiring a consolidated overview of the subject or an academic/student who wishes to use powerful simulators as a learning tool, Complex Electromagnetic Problems and Numerical Simulation Approaches - with its focus on model development, model justification, and range of validity - is the right book for you.

Time-Domain Methods for Microwave Structures

Time-Domain Methods for Microwave Structures
Author: Tatsuo Itoh
Publisher: Wiley-IEEE Press
Total Pages: 552
Release: 1998
Genre: Mathematics
ISBN:

"This book thoroughly explains the application of Finite-difference Time-domain (FDTD) method to microwave structures. Providing the reader with the most comprehensive collection of material available on this subject, each chapter is composed of an introductory section that addresses the theoretical background of a specific component of the FDTD method and a collection of reprints of the most important papers. Each chapter is contributed by a well-known authority in the field and contains illustrative examples. Topics covered include: * The numerical issues * Geometry description of microwave structures * Methods to reduce the requirements for excessive computational resources * Parallel and vector processing All the topics covered in this book are essential components for successful application of the FDTD method to realistic structures."