Application Of Estimation Theory Optimal Control And Lag Guidance Policy To A Practical End Game Intercept Problem Subject To Stochastic Processes
Download Application Of Estimation Theory Optimal Control And Lag Guidance Policy To A Practical End Game Intercept Problem Subject To Stochastic Processes full books in PDF, epub, and Kindle. Read online free Application Of Estimation Theory Optimal Control And Lag Guidance Policy To A Practical End Game Intercept Problem Subject To Stochastic Processes ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Commencement
Author | : University of California, Los Angeles |
Publisher | : |
Total Pages | : 538 |
Release | : 1966 |
Genre | : |
ISBN | : |
Applied Optimal Control
Author | : A. E. Bryson |
Publisher | : CRC Press |
Total Pages | : 500 |
Release | : 1975-01-01 |
Genre | : Technology & Engineering |
ISBN | : 9780891162285 |
This best-selling text focuses on the analysis and design of complicated dynamics systems. CHOICE called it “a high-level, concise book that could well be used as a reference by engineers, applied mathematicians, and undergraduates. The format is good, the presentation clear, the diagrams instructive, the examples and problems helpful...References and a multiple-choice examination are included.”
Comprehensive Dissertation Index, 1861-1972: Engineering: civil, electrical, and industrial
Author | : Xerox University Microfilms |
Publisher | : |
Total Pages | : 874 |
Release | : 1973 |
Genre | : Dissertations, Academic |
ISBN | : |
Reinforcement Learning, second edition
Author | : Richard S. Sutton |
Publisher | : MIT Press |
Total Pages | : 549 |
Release | : 2018-11-13 |
Genre | : Computers |
ISBN | : 0262352702 |
The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.
Random Processes for Engineers
Author | : Bruce Hajek |
Publisher | : Cambridge University Press |
Total Pages | : 429 |
Release | : 2015-03-12 |
Genre | : Technology & Engineering |
ISBN | : 1316241246 |
This engaging introduction to random processes provides students with the critical tools needed to design and evaluate engineering systems that must operate reliably in uncertain environments. A brief review of probability theory and real analysis of deterministic functions sets the stage for understanding random processes, whilst the underlying measure theoretic notions are explained in an intuitive, straightforward style. Students will learn to manage the complexity of randomness through the use of simple classes of random processes, statistical means and correlations, asymptotic analysis, sampling, and effective algorithms. Key topics covered include: • Calculus of random processes in linear systems • Kalman and Wiener filtering • Hidden Markov models for statistical inference • The estimation maximization (EM) algorithm • An introduction to martingales and concentration inequalities. Understanding of the key concepts is reinforced through over 100 worked examples and 300 thoroughly tested homework problems (half of which are solved in detail at the end of the book).
Optimal Control
Author | : Frank L. Lewis |
Publisher | : John Wiley & Sons |
Total Pages | : 552 |
Release | : 2012-02-01 |
Genre | : Technology & Engineering |
ISBN | : 0470633492 |
A NEW EDITION OF THE CLASSIC TEXT ON OPTIMAL CONTROL THEORY As a superb introductory text and an indispensable reference, this new edition of Optimal Control will serve the needs of both the professional engineer and the advanced student in mechanical, electrical, and aerospace engineering. Its coverage encompasses all the fundamental topics as well as the major changes that have occurred in recent years. An abundance of computer simulations using MATLAB and relevant Toolboxes is included to give the reader the actual experience of applying the theory to real-world situations. Major topics covered include: Static Optimization Optimal Control of Discrete-Time Systems Optimal Control of Continuous-Time Systems The Tracking Problem and Other LQR Extensions Final-Time-Free and Constrained Input Control Dynamic Programming Optimal Control for Polynomial Systems Output Feedback and Structured Control Robustness and Multivariable Frequency-Domain Techniques Differential Games Reinforcement Learning and Optimal Adaptive Control
Discrete Choice Methods with Simulation
Author | : Kenneth Train |
Publisher | : Cambridge University Press |
Total Pages | : 399 |
Release | : 2009-07-06 |
Genre | : Business & Economics |
ISBN | : 0521766559 |
This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.
Model Predictive Control
Author | : James Blake Rawlings |
Publisher | : |
Total Pages | : 770 |
Release | : 2017 |
Genre | : Control theory |
ISBN | : 9780975937754 |