Aperiodic Order

Aperiodic Order
Author: Michael Baake
Publisher: Cambridge University Press
Total Pages: 548
Release: 2013-08-22
Genre: Mathematics
ISBN: 0521869919

A comprehensive introductory monograph on the theory of aperiodic order, with numerous illustrations and examples.

Mathematics of Aperiodic Order

Mathematics of Aperiodic Order
Author: Johannes Kellendonk
Publisher: Birkhäuser
Total Pages: 438
Release: 2015-06-05
Genre: Mathematics
ISBN: 3034809034

What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically? Originally triggered by the – later Nobel prize-winning – discovery of quasicrystals, the investigation of aperiodic order has since become a well-established and rapidly evolving field of mathematical research with close ties to a surprising variety of branches of mathematics and physics. This book offers an overview of the state of the art in the field of aperiodic order, presented in carefully selected authoritative surveys. It is intended for non-experts with a general background in mathematics, theoretical physics or computer science, and offers a highly accessible source of first-hand information for all those interested in this rich and exciting field. Topics covered include the mathematical theory of diffraction, the dynamical systems of tilings or Delone sets, their cohomology and non-commutative geometry, the Pisot substitution conjecture, aperiodic Schrödinger operators, and connections to arithmetic number theory.

Aperiodic Order: Volume 1, A Mathematical Invitation

Aperiodic Order: Volume 1, A Mathematical Invitation
Author: Michael Baake
Publisher: Cambridge University Press
Total Pages: 548
Release: 2013-08-22
Genre: Mathematics
ISBN: 1316184382

Quasicrystals are non-periodic solids that were discovered in 1982 by Dan Shechtman, Nobel Prize Laureate in Chemistry 2011. The underlying mathematics, known as the theory of aperiodic order, is the subject of this comprehensive multi-volume series. This first volume provides a graduate-level introduction to the many facets of this relatively new area of mathematics. Special attention is given to methods from algebra, discrete geometry and harmonic analysis, while the main focus is on topics motivated by physics and crystallography. In particular, the authors provide a systematic exposition of the mathematical theory of kinematic diffraction. Numerous illustrations and worked-out examples help the reader to bridge the gap between theory and application. The authors also point to more advanced topics to show how the theory interacts with other areas of pure and applied mathematics.

Aperiodic Order: Volume 2, Crystallography and Almost Periodicity

Aperiodic Order: Volume 2, Crystallography and Almost Periodicity
Author: Michael Baake
Publisher: Cambridge University Press
Total Pages: 407
Release: 2017-11-02
Genre: Mathematics
ISBN: 1108505554

Quasicrystals are non-periodic solids that were discovered in 1982 by Dan Shechtman, Nobel Prize Laureate in Chemistry 2011. The mathematics that underlies this discovery or that proceeded from it, known as the theory of Aperiodic Order, is the subject of this comprehensive multi-volume series. This second volume begins to develop the theory in more depth. A collection of leading experts, among them Robert V. Moody, cover various aspects of crystallography, generalising appropriately from the classical case to the setting of aperiodically ordered structures. A strong focus is placed upon almost periodicity, a central concept of crystallography that captures the coherent repetition of local motifs or patterns, and its close links to Fourier analysis. The book opens with a foreword by Jeffrey C. Lagarias on the wider mathematical perspective and closes with an epilogue on the emergence of quasicrystals, written by Peter Kramer, one of the founders of the field.

Aperiodic Order: Volume 2, Crystallography and Almost Periodicity

Aperiodic Order: Volume 2, Crystallography and Almost Periodicity
Author: Michael Baake
Publisher: Cambridge University Press
Total Pages: 408
Release: 2017-11-02
Genre: Mathematics
ISBN: 1108514499

Quasicrystals are non-periodic solids that were discovered in 1982 by Dan Shechtman, Nobel Prize Laureate in Chemistry 2011. The mathematics that underlies this discovery or that proceeded from it, known as the theory of Aperiodic Order, is the subject of this comprehensive multi-volume series. This second volume begins to develop the theory in more depth. A collection of leading experts, among them Robert V. Moody, cover various aspects of crystallography, generalising appropriately from the classical case to the setting of aperiodically ordered structures. A strong focus is placed upon almost periodicity, a central concept of crystallography that captures the coherent repetition of local motifs or patterns, and its close links to Fourier analysis. The book opens with a foreword by Jeffrey C. Lagarias on the wider mathematical perspective and closes with an epilogue on the emergence of quasicrystals, written by Peter Kramer, one of the founders of the field.

Aperiodic Structures in Condensed Matter

Aperiodic Structures in Condensed Matter
Author: Enrique Macia Barber
Publisher: CRC Press
Total Pages: 457
Release: 2008-11-21
Genre: Science
ISBN: 1420068288

One of the Top Selling Physics Books according to YBP Library ServicesOrder can be found in all the structures unfolding around us at different scales, including in the arrangements of matter and in energy flow patterns. Aperiodic Structures in Condensed Matter: Fundamentals and Applications focuses on a special kind of order referred to as aperiod

Aperiodic Crystals

Aperiodic Crystals
Author: Ted Janssen
Publisher: Oxford University Press, USA
Total Pages: 481
Release: 2007-05-24
Genre: Science
ISBN: 0198567774

Most materials and crystals have an atomic structure which is described by a regular stacking of a microscopic fundamental unit, the unit cell. However, there are also many well ordered materials without such a unit cell. This book deals with the structure determination and a discussion of the main special properties of these materials.

The Mathematics of Long-Range Aperiodic Order

The Mathematics of Long-Range Aperiodic Order
Author: R.V. Moody
Publisher: Springer
Total Pages: 556
Release: 1997-03-31
Genre: Mathematics
ISBN: 0792345061

THEOREM: Rotational symmetries of order greater than six, and also five-fold rotational symmetry, are impossible for a periodic pattern in the plane or in three-dimensional space. The discovery of quasicrystals shattered this fundamental 'law', not by showing it to be logically false but by showing that periodicity was not synonymous with long-range order, if by 'long-range order' we mean whatever order is necessary for a crystal to produce a diffraction pat tern with sharp bright spots. It suggested that we may not know what 'long-range order' means, nor what a 'crystal' is, nor how 'symmetry' should be defined. Since 1984, solid state science has been under going a veritable K uhnian revolution. -M. SENECHAL, Quasicrystals and Geometry Between total order and total disorder He the vast majority of physical structures and processes that we see around us in the natural world. On the whole our mathematics is well developed for describing the totally ordered or totally disordered worlds. But in reality the two are rarely separated and the mathematical tools required to investigate these in-between states in depth are in their infancy.

Plasmonics: Theory and Applications

Plasmonics: Theory and Applications
Author: Tigran V. Shahbazyan
Publisher: Springer Science & Business Media
Total Pages: 581
Release: 2014-01-09
Genre: Science
ISBN: 9400778058

This contributed volume summarizes recent theoretical developments in plasmonics and its applications in physics, chemistry, materials science, engineering, and medicine. It focuses on recent advances in several major areas of plasmonics including plasmon-enhanced spectroscopies, light scattering, many-body effects, nonlinear optics, and ultrafast dynamics. The theoretical and computational methods used in these investigations include electromagnetic calculations, density functional theory calculations, and nonequilibrium electron dynamics calculations. The book presents a comprehensive overview of these methods as well as their applications to various current problems of interest.

Topology of Tiling Spaces

Topology of Tiling Spaces
Author: Lorenzo Adlai Sadun
Publisher: American Mathematical Soc.
Total Pages: 131
Release: 2008
Genre: Mathematics
ISBN: 0821847279

"This book is an introduction to the topology of tiling spaces, with a target audience of graduate students who wish to learn about the interface of topology with aperiodic order. It isn't a comprehensive and cross-referenced tome about everything having to do with tilings, which would be too big, too hard to read, and far too hard to write! Rather, it is a review of the explosion of recent work on tiling spaces as inverse limits, on the cohomology of tiling spaces, on substitution tilings and the role of rotations, and on tilings that do not have finite local complexity. Powerful computational techniques have been developed, as have new ways of thinking about tiling spaces." "The text contains a generous supply of examples and exercises."--BOOK JACKET.