Another Look At Conditionally Gaussian Markov Random Fields
Download Another Look At Conditionally Gaussian Markov Random Fields full books in PDF, epub, and Kindle. Read online free Another Look At Conditionally Gaussian Markov Random Fields ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : J. M. Bernardo |
Publisher | : Oxford University Press |
Total Pages | : 886 |
Release | : 1999-08-12 |
Genre | : Business & Economics |
ISBN | : 9780198504856 |
Bayesian statistics is a dynamic and fast-growing area of statistical research and the Valencia International Meetings provide the main forum for discussion. These resulting proceedings form an up-to-date collection of research.
Author | : Havard Rue |
Publisher | : CRC Press |
Total Pages | : 280 |
Release | : 2005-02-18 |
Genre | : Mathematics |
ISBN | : 0203492021 |
Gaussian Markov Random Field (GMRF) models are most widely used in spatial statistics - a very active area of research in which few up-to-date reference works are available. This is the first book on the subject that provides a unified framework of GMRFs with particular emphasis on the computational aspects. This book includes extensive case-studie
Author | : Peter D. Congdon |
Publisher | : CRC Press |
Total Pages | : 606 |
Release | : 2010-05-19 |
Genre | : Mathematics |
ISBN | : 1584887214 |
The use of Markov chain Monte Carlo (MCMC) methods for estimating hierarchical models involves complex data structures and is often described as a revolutionary development. An intermediate-level treatment of Bayesian hierarchical models and their applications, Applied Bayesian Hierarchical Methods demonstrates the advantages of a Bayesian approach
Author | : Peter D. Congdon |
Publisher | : CRC Press |
Total Pages | : 487 |
Release | : 2019-09-16 |
Genre | : Mathematics |
ISBN | : 0429532903 |
An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods. The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples. The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities. Features: Provides a comprehensive and accessible overview of applied Bayesian hierarchical modelling Includes many real data examples to illustrate different modelling topics R code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementation Software options and coding principles are introduced in new chapter on computing Programs and data sets available on the book’s website
Author | : J. M. Bernardo |
Publisher | : Oxford University Press |
Total Pages | : 1114 |
Release | : 2003-07-03 |
Genre | : Mathematics |
ISBN | : 9780198526155 |
This volume contains the proceedings of the 7th Valencia International Meeting on Bayesian Statistics. This conference is held every four years and provides the main forum for researchers in the area of Bayesian statistics to come together to present and discuss frontier developments in the field.
Author | : |
Publisher | : Elsevier |
Total Pages | : 1062 |
Release | : 2005-11-29 |
Genre | : Mathematics |
ISBN | : 0080461174 |
This volume describes how to develop Bayesian thinking, modelling and computation both from philosophical, methodological and application point of view. It further describes parametric and nonparametric Bayesian methods for modelling and how to use modern computational methods to summarize inferences using simulation. The book covers wide range of topics including objective and subjective Bayesian inferences with a variety of applications in modelling categorical, survival, spatial, spatiotemporal, Epidemiological, software reliability, small area and micro array data. The book concludes with a chapter on how to teach Bayesian thoughts to nonstatisticians. Critical thinking on causal effects Objective Bayesian philosophy Nonparametric Bayesian methodology Simulation based computing techniques Bioinformatics and Biostatistics
Author | : Charles Sutton |
Publisher | : Now Pub |
Total Pages | : 120 |
Release | : 2012 |
Genre | : Computers |
ISBN | : 9781601985729 |
An Introduction to Conditional Random Fields provides a comprehensive tutorial aimed at application-oriented practitioners seeking to apply CRFs. The monograph does not assume previous knowledge of graphical modeling, and so is intended to be useful to practitioners in a wide variety of fields.
Author | : R. J. Adler |
Publisher | : Springer Science & Business Media |
Total Pages | : 455 |
Release | : 2009-01-29 |
Genre | : Mathematics |
ISBN | : 0387481168 |
This monograph is devoted to a completely new approach to geometric problems arising in the study of random fields. The groundbreaking material in Part III, for which the background is carefully prepared in Parts I and II, is of both theoretical and practical importance, and striking in the way in which problems arising in geometry and probability are beautifully intertwined. "Random Fields and Geometry" will be useful for probabilists and statisticians, and for theoretical and applied mathematicians who wish to learn about new relationships between geometry and probability. It will be helpful for graduate students in a classroom setting, or for self-study. Finally, this text will serve as a basic reference for all those interested in the companion volume of the applications of the theory.
Author | : Zoltan Kato |
Publisher | : Now Pub |
Total Pages | : 168 |
Release | : 2012-09 |
Genre | : Computers |
ISBN | : 9781601985880 |
Markov Random Fields in Image Segmentation provides an introduction to the fundamentals of Markovian modeling in image segmentation as well as a brief overview of recent advances in the field. Segmentation is formulated within an image labeling framework, where the problem is reduced to assigning labels to pixels. In a probabilistic approach, label dependencies are modeled by Markov random fields (MRF) and an optimal labeling is determined by Bayesian estimation, in particular maximum a posteriori (MAP) estimation. The main advantage of MRF models is that prior information can be imposed locally through clique potentials. MRF models usually yield a non-convex energy function. The minimization of this function is crucial in order to find the most likely segmentation according to the MRF model. Classical optimization algorithms including simulated annealing and deterministic relaxation are treated along with more recent graph cut-based algorithms. The primary goal of this monograph is to demonstrate the basic steps to construct an easily applicable MRF segmentation model and further develop its multi-scale and hierarchical implementations as well as their combination in a multilayer model. Representative examples from remote sensing and biological imaging are analyzed in full detail to illustrate the applicability of these MRF models. Furthermore, a sample implementation of the most important segmentation algorithms is available as supplementary software. Markov Random Fields in Image Segmentation is an invaluable resource for every student, engineer, or researcher dealing with Markovian modeling for image segmentation.
Author | : Stan Z. Li |
Publisher | : Springer Science & Business Media |
Total Pages | : 372 |
Release | : 2009-04-03 |
Genre | : Computers |
ISBN | : 1848002793 |
Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This third edition includes the most recent advances and has new and expanded sections on topics such as: Bayesian Network; Discriminative Random Fields; Strong Random Fields; Spatial-Temporal Models; Learning MRF for Classification. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in these areas.