Analytical Skills For Ai And Data Science
Download Analytical Skills For Ai And Data Science full books in PDF, epub, and Kindle. Read online free Analytical Skills For Ai And Data Science ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Daniel Vaughan |
Publisher | : O'Reilly Media |
Total Pages | : 244 |
Release | : 2020-05-21 |
Genre | : Computers |
ISBN | : 1492060917 |
While several market-leading companies have successfully transformed their business models by following data- and AI-driven paths, the vast majority have yet to reap the benefits. How can your business and analytics units gain a competitive advantage by capturing the full potential of this predictive revolution? This practical guide presents a battle-tested end-to-end method to help you translate business decisions into tractable prescriptive solutions using data and AI as fundamental inputs. Author Daniel Vaughan shows data scientists, analytics practitioners, and others interested in using AI to transform their businesses not only how to ask the right questions but also how to generate value using modern AI technologies and decision-making principles. You’ll explore several use cases common to many enterprises, complete with examples you can apply when working to solve your own issues. Break business decisions into stages that can be tackled using different skills from the analytical toolbox Identify and embrace uncertainty in decision making and protect against common human biases Customize optimal decisions to different customers using predictive and prescriptive methods and technologies Ask business questions that create high value through AI- and data-driven technologies
Author | : Daniel Vaughan |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 300 |
Release | : 2020-05-21 |
Genre | : Computers |
ISBN | : 1492060895 |
While several market-leading companies have successfully transformed their business models by following data- and AI-driven paths, the vast majority have yet to reap the benefits. How can your business and analytics units gain a competitive advantage by capturing the full potential of this predictive revolution? This practical guide presents a battle-tested end-to-end method to help you translate business decisions into tractable prescriptive solutions using data and AI as fundamental inputs. Author Daniel Vaughan shows data scientists, analytics practitioners, and others interested in using AI to transform their businesses not only how to ask the right questions but also how to generate value using modern AI technologies and decision-making principles. You’ll explore several use cases common to many enterprises, complete with examples you can apply when working to solve your own issues. Break business decisions into stages that can be tackled using different skills from the analytical toolbox Identify and embrace uncertainty in decision making and protect against common human biases Customize optimal decisions to different customers using predictive and prescriptive methods and technologies Ask business questions that create high value through AI- and data-driven technologies
Author | : Daniel Vaughan |
Publisher | : O'Reilly Media |
Total Pages | : 250 |
Release | : 2020-08-11 |
Genre | : Computers |
ISBN | : 9781492060949 |
While several market-leading companies have successfully transformed through data- and AI-driven approaches to business, the vast majority have yet to reap the benefits. How can your business and analytics units gain a competitive advantage by capturing the potential of this predictive revolution? This practical guide presents a battle-tested method to help you translate business decisions into tractable descriptive, predictive, and prescriptive problems. Author Daniel Vaughan shows practitioners of data science and others interested in using AI not only how to ask the right questions but also how to generate value from data and analytics using modern AI technologies and decision theory principles. You'll explore several use cases common to many enterprises, complete with examples you can apply when working to solve your own issues. With this book, you'll learn how to: Break business decisions into stages and use predictive or prescriptive methods on each stage Identify human biases when working with uncertainty Customize optimal decisions to different customers using predictive and prescriptive methods Ask business questions with high potential for value creation through AI and data-driven methods Simplify complexity to tackle difficult business decisions with current predictive and prescriptive technologies
Author | : Eric Anderson |
Publisher | : McGraw Hill Professional |
Total Pages | : 353 |
Release | : 2020-11-23 |
Genre | : Business & Economics |
ISBN | : 1260459152 |
Lead your organization to become evidence-driven Data. It’s the benchmark that informs corporate projections, decision-making, and analysis. But, why do many organizations that see themselves as data-driven fail to thrive? In Leading with AI and Analytics, two renowned experts from the Kellogg School of Management show business leaders how to transform their organization to become evidence-driven, which leads to real, measurable changes that can help propel their companies to the top of their industries. The availability of unprecedented technology-enabled tools has made AI (Artificial Intelligence) an essential component of business analytics. But what’s often lacking are the leadership skills to integrate these technologies to achieve maximum value. Here, the authors provide a comprehensive game plan for developing that all-important human factor to get at the heart of data science: the ability to apply analytical thinking to real-world problems. Each of these tools and techniques comes to powerful life through a wealth of powerful case studies and real-world success stories. Inside, you’ll find the essential tools to help you: Develop a strong data science intuition quotient Lead and scale AI and analytics throughout your organization Move from “best-guess” decision making to evidence-based decisions Craft strategies and tactics to create real impact Written for anyone in a leadership or management role—from C-level/unit team managers to rising talent—this powerful, hands-on guide meets today’s growing need for real-world tools to lead and succeed with data.
Author | : Foster Provost |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 506 |
Release | : 2013-07-27 |
Genre | : Computers |
ISBN | : 144937428X |
Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates
Author | : Gilbert Eijkelenboom |
Publisher | : |
Total Pages | : 166 |
Release | : 2020-09-29 |
Genre | : |
ISBN | : 9789090336985 |
Your analytical skills are incredibly valuable. However, rational thinking alone isn't enough. Have you ever: Presented an idea, but then no one seemed to care? Explained your analysis, only to leave your colleague confused? Struggled to work with people who are less analytical and more emotional? In such situations, people skills make the difference. And that's what this book focuses on: boosting your communication skills as an analytical thinker. Research shows people skills are becoming increasingly important in the workplace, so start learning today. Filled with academic insights, exercises, and stories, this book will change your career. What you will learn Having fun and productive interactions, even with people who don't have an analytical personality Boost your confidence and increase your empathy Learn how to deal with small-talk you don't enjoy Advance your communication skills and build relationships (th)at work Become incredibly persuasive by avoiding the single mistake that almost everyone makes
Author | : EMC Education Services |
Publisher | : John Wiley & Sons |
Total Pages | : 432 |
Release | : 2014-12-19 |
Genre | : Computers |
ISBN | : 1118876229 |
Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today!
Author | : Vincent Granville |
Publisher | : John Wiley & Sons |
Total Pages | : 336 |
Release | : 2014-03-24 |
Genre | : Computers |
ISBN | : 1118810090 |
Learn what it takes to succeed in the the most in-demand tech job Harvard Business Review calls it the sexiest tech job of the 21st century. Data scientists are in demand, and this unique book shows you exactly what employers want and the skill set that separates the quality data scientist from other talented IT professionals. Data science involves extracting, creating, and processing data to turn it into business value. With over 15 years of big data, predictive modeling, and business analytics experience, author Vincent Granville is no stranger to data science. In this one-of-a-kind guide, he provides insight into the essential data science skills, such as statistics and visualization techniques, and covers everything from analytical recipes and data science tricks to common job interview questions, sample resumes, and source code. The applications are endless and varied: automatically detecting spam and plagiarism, optimizing bid prices in keyword advertising, identifying new molecules to fight cancer, assessing the risk of meteorite impact. Complete with case studies, this book is a must, whether you're looking to become a data scientist or to hire one. Explains the finer points of data science, the required skills, and how to acquire them, including analytical recipes, standard rules, source code, and a dictionary of terms Shows what companies are looking for and how the growing importance of big data has increased the demand for data scientists Features job interview questions, sample resumes, salary surveys, and examples of job ads Case studies explore how data science is used on Wall Street, in botnet detection, for online advertising, and in many other business-critical situations Developing Analytic Talent: Becoming a Data Scientist is essential reading for those aspiring to this hot career choice and for employers seeking the best candidates.
Author | : Brian Godsey |
Publisher | : Simon and Schuster |
Total Pages | : 540 |
Release | : 2017-03-09 |
Genre | : Computers |
ISBN | : 1638355207 |
Summary Think Like a Data Scientist presents a step-by-step approach to data science, combining analytic, programming, and business perspectives into easy-to-digest techniques and thought processes for solving real world data-centric problems. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Data collected from customers, scientific measurements, IoT sensors, and so on is valuable only if you understand it. Data scientists revel in the interesting and rewarding challenge of observing, exploring, analyzing, and interpreting this data. Getting started with data science means more than mastering analytic tools and techniques, however; the real magic happens when you begin to think like a data scientist. This book will get you there. About the Book Think Like a Data Scientist teaches you a step-by-step approach to solving real-world data-centric problems. By breaking down carefully crafted examples, you'll learn to combine analytic, programming, and business perspectives into a repeatable process for extracting real knowledge from data. As you read, you'll discover (or remember) valuable statistical techniques and explore powerful data science software. More importantly, you'll put this knowledge together using a structured process for data science. When you've finished, you'll have a strong foundation for a lifetime of data science learning and practice. What's Inside The data science process, step-by-step How to anticipate problems Dealing with uncertainty Best practices in software and scientific thinking About the Reader Readers need beginner programming skills and knowledge of basic statistics. About the Author Brian Godsey has worked in software, academia, finance, and defense and has launched several data-centric start-ups. Table of Contents PART 1 - PREPARING AND GATHERING DATA AND KNOWLEDGE Philosophies of data science Setting goals by asking good questions Data all around us: the virtual wilderness Data wrangling: from capture to domestication Data assessment: poking and prodding PART 2 - BUILDING A PRODUCT WITH SOFTWARE AND STATISTICS Developing a plan Statistics and modeling: concepts and foundations Software: statistics in action Supplementary software: bigger, faster, more efficient Plan execution: putting it all together PART 3 - FINISHING OFF THE PRODUCT AND WRAPPING UP Delivering a product After product delivery: problems and revisions Wrapping up: putting the project away
Author | : Field Cady |
Publisher | : John Wiley & Sons |
Total Pages | : 208 |
Release | : 2020-12-30 |
Genre | : Business & Economics |
ISBN | : 1119544084 |
Tap into the power of data science with this comprehensive resource for non-technical professionals Data Science: The Executive Summary – A Technical Book for Non-Technical Professionals is a comprehensive resource for people in non-engineer roles who want to fully understand data science and analytics concepts. Accomplished data scientist and author Field Cady describes both the “business side” of data science, including what problems it solves and how it fits into an organization, and the technical side, including analytical techniques and key technologies. Data Science: The Executive Summary covers topics like: Assessing whether your organization needs data scientists, and what to look for when hiring them When Big Data is the best approach to use for a project, and when it actually ties analysts’ hands Cutting edge Artificial Intelligence, as well as classical approaches that work better for many problems How many techniques rely on dubious mathematical idealizations, and when you can work around them Perfect for executives who make critical decisions based on data science and analytics, as well as mangers who hire and assess the work of data scientists, Data Science: The Executive Summary also belongs on the bookshelves of salespeople and marketers who need to explain what a data analytics product does. Finally, data scientists themselves will improve their technical work with insights into the goals and constraints of the business situation.