Analysis of the K-Epsilon Turbulence Model

Analysis of the K-Epsilon Turbulence Model
Author: B. Mohammadi
Publisher:
Total Pages: 222
Release: 1994-09-06
Genre: Mathematics
ISBN:

Aimed at applied mathematicians interested in the numerical simulation of turbulent flows. Centered around the k-&epsis; model, it also deals with other models such as one equation models, subgrid scale models and Reynolds Stress models. Presents the k-&epsis; method for turbulence in a language familiar to applied mathematicians, but has none of the technicalities of turbulence theory.

Turbulent Jets

Turbulent Jets
Author: N. Rajaratnam
Publisher: Elsevier
Total Pages: 315
Release: 1976-01-01
Genre: Science
ISBN: 0080869963

Turbulent Jets

An Improved K-Epsilon Model for Near-Wall Turbulence and Comparison with Direct Numerical Simulation

An Improved K-Epsilon Model for Near-Wall Turbulence and Comparison with Direct Numerical Simulation
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
Total Pages: 38
Release: 2018-08-16
Genre:
ISBN: 9781725098879

An improved k-epsilon model for low Reynolds number turbulence near a wall is presented. The near-wall asymptotic behavior of the eddy viscosity and the pressure transport term in the turbulent kinetic energy equation is analyzed. Based on this analysis, a modified eddy viscosity model, having correct near-wall behavior, is suggested, and a model for the pressure transport term in the k-equation is proposed. In addition, a modeled dissipation rate equation is reformulated. Fully developed channel flows were used for model testing. The calculations using various k-epsilon models are compared with direct numerical simulations. The results show that the present k-epsilon model performs well in predicting the behavior of near-wall turbulence. Significant improvement over previous k-epsilon models is obtained. Shih, T. H. Glenn Research Center NASA-TM-103221, ICOMP-90-16, E-5635, NAS 1.15:103221 NASA ORDER C-99066-G; RTOP 505-62-21...

Mathematical and Numerical Foundations of Turbulence Models and Applications

Mathematical and Numerical Foundations of Turbulence Models and Applications
Author: Tomás Chacón Rebollo
Publisher: Springer
Total Pages: 530
Release: 2014-06-17
Genre: Mathematics
ISBN: 1493904558

With applications to climate, technology, and industry, the modeling and numerical simulation of turbulent flows are rich with history and modern relevance. The complexity of the problems that arise in the study of turbulence requires tools from various scientific disciplines, including mathematics, physics, engineering and computer science. Authored by two experts in the area with a long history of collaboration, this monograph provides a current, detailed look at several turbulence models from both the theoretical and numerical perspectives. The k-epsilon, large-eddy simulation and other models are rigorously derived and their performance is analyzed using benchmark simulations for real-world turbulent flows. Mathematical and Numerical Foundations of Turbulence Models and Applications is an ideal reference for students in applied mathematics and engineering, as well as researchers in mathematical and numerical fluid dynamics. It is also a valuable resource for advanced graduate students in fluid dynamics, engineers, physical oceanographers, meteorologists and climatologists.