Analysis Of Distributional Data
Download Analysis Of Distributional Data full books in PDF, epub, and Kindle. Read online free Analysis Of Distributional Data ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Paula Brito |
Publisher | : CRC Press |
Total Pages | : 404 |
Release | : 2022-04-27 |
Genre | : Mathematics |
ISBN | : 1498725465 |
In a time when increasingly larger and complex data collections are being produced, it is clear that new and adaptive forms of data representation and analysis have to be conceived and implemented. Distributional data, i.e., data where a distribution rather than a single value is recorded for each descriptor, on each unit, come into this framework. Distributional data may result from the aggregation of large amounts of open/collected/generated data, or it may be directly available in a structured or unstructured form, describing the variability of some features. This book provides models and methods for the representation, analysis, interpretation, and organization of distributional data, taking into account its specific nature, and not relying on a reduction to single values, to be conform to classical paradigms. Conceived as an edited book, gathering contributions from multiple authors, the book presents alternative representations and analysis’ methods for distributional data of different types, and in particular, -Uni- and bi-variate descriptive statistics for distributional data -Clustering and classification methodologies -Methods for the representation in low-dimensional spaces -Regression models and forecasting approaches for distribution-valued variables Furthermore, the different chapters -Feature applications to show how the proposed methods work in practice, and how results are to be interpreted, -Often provide information about available software. The methodologies presented in this book constitute cutting-edge developments for stakeholders from all domains who produce and analyse large amounts of complex data, to be analysed in the form of distributions. The book is hence of interest for companies operating not only in the area of data analytics, but also on logistics, energy and finance. It also concerns national statistical institutes and other institutions at European and international level, where microdata is aggregated to preserve confidentiality and allow for analysis at the appropriate regional level. Academics will find in the analysis of distributional data a challenging up-to-date field of research.
Author | : Paula Brito |
Publisher | : |
Total Pages | : 0 |
Release | : 2022 |
Genre | : Big data |
ISBN | : 9781032255712 |
In a time when increasingly larger and complex data collections are being produced, it is clear that new and adaptive forms of data representation and analysis have to be conceived and implemented. Distributional data, i.e., data where a distribution rather than a single value is recorded for each descriptor, on each unit, come into this framework. Distributional data may result from the aggregation of large amounts of open/collected/generated data, or it may be directly available in a structured or unstructured form, describing the variability of some features. This book provides models and methods for the representation, analysis, interpretation, and organization of distributional data, taking into account its specific nature, and not relying on a reduction to single values, to be conform to classical paradigms. --
Author | : Mark S. Handcock |
Publisher | : Springer Science & Business Media |
Total Pages | : 272 |
Release | : 2006-05-10 |
Genre | : Social Science |
ISBN | : 0387226583 |
This monograph presents methods for full comparative distributional analysis based on the relative distribution. This provides a general integrated framework for analysis, a graphical component that simplifies exploratory data analysis and display, a statistically valid basis for the development of hypothesis-driven summary measures, and the potential for decomposition - enabling the examination of complex hypotheses regarding the origins of distributional changes within and between groups. Written for data analysts and those interested in measurement, the text can also serve as a textbook for a course on distributional methods.
Author | : Rafael A. Irizarry |
Publisher | : CRC Press |
Total Pages | : 836 |
Release | : 2019-11-20 |
Genre | : Mathematics |
ISBN | : 1000708039 |
Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.
Author | : Tim Roughgarden |
Publisher | : Cambridge University Press |
Total Pages | : 705 |
Release | : 2021-01-14 |
Genre | : Computers |
ISBN | : 1108494315 |
Introduces exciting new methods for assessing algorithms for problems ranging from clustering to linear programming to neural networks.
Author | : Andrew Gelman |
Publisher | : CRC Press |
Total Pages | : 677 |
Release | : 2013-11-01 |
Genre | : Mathematics |
ISBN | : 1439840954 |
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Author | : Rafael A. Irizarry |
Publisher | : CRC Press |
Total Pages | : 537 |
Release | : 2016-10-04 |
Genre | : Mathematics |
ISBN | : 1498775861 |
This book covers several of the statistical concepts and data analytic skills needed to succeed in data-driven life science research. The authors proceed from relatively basic concepts related to computed p-values to advanced topics related to analyzing highthroughput data. They include the R code that performs this analysis and connect the lines of code to the statistical and mathematical concepts explained.
Author | : David Borman |
Publisher | : Simon and Schuster |
Total Pages | : 240 |
Release | : 2018-12-18 |
Genre | : Mathematics |
ISBN | : 1507208189 |
A comprehensive guide to statistics—with information on collecting, measuring, analyzing, and presenting statistical data—continuing the popular 101 series. Data is everywhere. In the age of the internet and social media, we’re responsible for consuming, evaluating, and analyzing data on a daily basis. From understanding the percentage probability that it will rain later today, to evaluating your risk of a health problem, or the fluctuations in the stock market, statistics impact our lives in a variety of ways, and are vital to a variety of careers and fields of practice. Unfortunately, most statistics text books just make us want to take a snooze, but with Statistics 101, you’ll learn the basics of statistics in a way that is both easy-to-understand and apply. From learning the theory of probability and different kinds of distribution concepts, to identifying data patterns and graphing and presenting precise findings, this essential guide can help turn statistical math from scary and complicated, to easy and fun. Whether you are a student looking to supplement your learning, a worker hoping to better understand how statistics works for your job, or a lifelong learner looking to improve your grasp of the world, Statistics 101 has you covered.
Author | : Richard E. Thomson |
Publisher | : Elsevier |
Total Pages | : 654 |
Release | : 2001-04-03 |
Genre | : Science |
ISBN | : 0080477003 |
Data Analysis Methods in Physical Oceanography is a practical referenceguide to established and modern data analysis techniques in earth and oceansciences. This second and revised edition is even more comprehensive with numerous updates, and an additional appendix on 'Convolution and Fourier transforms'. Intended for both students and established scientists, the fivemajor chapters of the book cover data acquisition and recording, dataprocessing and presentation, statistical methods and error handling,analysis of spatial data fields, and time series analysis methods. Chapter 5on time series analysis is a book in itself, spanning a wide diversity oftopics from stochastic processes and stationarity, coherence functions,Fourier analysis, tidal harmonic analysis, spectral and cross-spectralanalysis, wavelet and other related methods for processing nonstationarydata series, digital filters, and fractals. The seven appendices includeunit conversions, approximation methods and nondimensional numbers used ingeophysical fluid dynamics, presentations on convolution, statisticalterminology, and distribution functions, and a number of importantstatistical tables. Twenty pages are devoted to references. Featuring:• An in-depth presentation of modern techniques for the analysis of temporal and spatial data sets collected in oceanography, geophysics, and other disciplines in earth and ocean sciences.• A detailed overview of oceanographic instrumentation and sensors - old and new - used to collect oceanographic data.• 7 appendices especially applicable to earth and ocean sciences ranging from conversion of units, through statistical tables, to terminology and non-dimensional parameters. In praise of the first edition: "(...)This is a very practical guide to the various statistical analysis methods used for obtaining information from geophysical data, with particular reference to oceanography(...)The book provides both a text for advanced students of the geophysical sciences and a useful reference volume for researchers." Aslib Book Guide Vol 63, No. 9, 1998 "(...)This is an excellent book that I recommend highly and will definitely use for my own research and teaching." EOS Transactions, D.A. Jay, 1999 "(...)In summary, this book is the most comprehensive and practical source of information on data analysis methods available to the physical oceanographer. The reader gets the benefit of extremely broad coverage and an excellent set of examples drawn from geographical observations." Oceanography, Vol. 12, No. 3, A. Plueddemann, 1999 "(...)Data Analysis Methods in Physical Oceanography is highly recommended for a wide range of readers, from the relative novice to the experienced researcher. It would be appropriate for academic and special libraries." E-Streams, Vol. 2, No. 8, P. Mofjelf, August 1999
Author | : Richard Cookson |
Publisher | : Handbooks in Health Economic Evaluation |
Total Pages | : 385 |
Release | : 2020-09-30 |
Genre | : Medical care |
ISBN | : 0198838190 |
Health inequalities blight lives, generate enormous costs, and exist everywhere. This book is the definitive all-in-one guide for anyone who wishes to learn about, commission, and use distributional cost-effectiveness analysis to promote both equity and efficiency in health and healthcare.