Analog And Algorithm Assisted Ultra Low Power Biosignal Acquisition Systems
Download Analog And Algorithm Assisted Ultra Low Power Biosignal Acquisition Systems full books in PDF, epub, and Kindle. Read online free Analog And Algorithm Assisted Ultra Low Power Biosignal Acquisition Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Venkata Rajesh Pamula |
Publisher | : Springer |
Total Pages | : 130 |
Release | : 2019-01-02 |
Genre | : Technology & Engineering |
ISBN | : 3030058700 |
This book discusses the design and implementation aspects of ultra-low power biosignal acquisition platforms that exploit analog-assisted and algorithmic approaches for power savings.The authors describe an approach referred to as “analog-and-algorithm-assisted” signal processing.This enables significant power consumption reductions by implementing low power biosignal acquisition systems, leveraging analog preprocessing and algorithmic approaches to reduce the data rate very early in the signal processing chain.They demonstrate savings for wearable sensor networks (WSN) and body area networks (BAN), in the sensors’ stimulation power consumption, as well in the power consumption of the digital signal processing and the radio link. Two specific implementations, an adaptive sampling electrocardiogram (ECG) acquisition and a compressive sampling (CS) photoplethysmogram (PPG) acquisition system, are demonstrated. First book to present the so called, “analog-and-algorithm-assisted” approaches for ultra-low power biosignal acquisition and processing platforms; Covers the recent trend of “beyond Nyquist rate” signal acquisition and processing in detail, including adaptive sampling and compressive sampling paradigms; Includes chapters on compressed domain feature extraction, as well as acquisition of photoplethysmogram, an emerging optical sensing modality, including compressive sampling based PPG readout with embedded feature extraction; Discusses emerging trends in sensor fusion for improving the signal integrity, as well as lowering the power consumption of biosignal acquisition systems.
Author | : Rahul Sarpeshkar |
Publisher | : Cambridge University Press |
Total Pages | : 909 |
Release | : 2010-02-22 |
Genre | : Technology & Engineering |
ISBN | : 1139485237 |
This book provides, for the first time, a broad and deep treatment of the fields of both ultra low power electronics and bioelectronics. It discusses fundamental principles and circuits for ultra low power electronic design and their applications in biomedical systems. It also discusses how ultra energy efficient cellular and neural systems in biology can inspire revolutionary low power architectures in mixed-signal and RF electronics. The book presents a unique, unifying view of ultra low power analog and digital electronics and emphasizes the use of the ultra energy efficient subthreshold regime of transistor operation in both. Chapters on batteries, energy harvesting, and the future of energy provide an understanding of fundamental relationships between energy use and energy generation at small scales and at large scales. A wealth of insights and examples from brain implants, cochlear implants, bio-molecular sensing, cardiac devices, and bio-inspired systems make the book useful and engaging for students and practicing engineers.
Author | : R. Simon Sherratt |
Publisher | : MDPI |
Total Pages | : 146 |
Release | : 2020-12-29 |
Genre | : Science |
ISBN | : 3039364790 |
Advances in technology have produced a range of on-body sensors and smartwatches that can be used to monitor a wearer’s health with the objective to keep the user healthy. However, the real potential of such devices not only lies in monitoring but also in interactive communication with expert-system-based cloud services to offer personalized and real-time healthcare advice that will enable the user to manage their health and, over time, to reduce expensive hospital admissions. To meet this goal, the research challenges for the next generation of wearable healthcare devices include the need to offer a wide range of sensing, computing, communication, and human–computer interaction methods, all within a tiny device with limited resources and electrical power. This Special Issue presents a collection of six papers on a wide range of research developments that highlight the specific challenges in creating the next generation of low-power wearable healthcare sensors.
Author | : Wim van Drongelen |
Publisher | : Elsevier |
Total Pages | : 319 |
Release | : 2006-12-18 |
Genre | : Science |
ISBN | : 008046775X |
Signal Processing for Neuroscientists introduces analysis techniques primarily aimed at neuroscientists and biomedical engineering students with a reasonable but modest background in mathematics, physics, and computer programming. The focus of this text is on what can be considered the 'golden trio' in the signal processing field: averaging, Fourier analysis, and filtering. Techniques such as convolution, correlation, coherence, and wavelet analysis are considered in the context of time and frequency domain analysis. The whole spectrum of signal analysis is covered, ranging from data acquisition to data processing; and from the mathematical background of the analysis to the practical application of processing algorithms. Overall, the approach to the mathematics is informal with a focus on basic understanding of the methods and their interrelationships rather than detailed proofs or derivations. One of the principle goals is to provide the reader with the background required to understand the principles of commercially available analyses software, and to allow him/her to construct his/her own analysis tools in an environment such as MATLAB®. - Multiple color illustrations are integrated in the text - Includes an introduction to biomedical signals, noise characteristics, and recording techniques - Basics and background for more advanced topics can be found in extensive notes and appendices - A Companion Website hosts the MATLAB scripts and several data files: http://www.elsevierdirect.com/companion.jsp?ISBN=9780123708670
Author | : João Carlos Ferreira de Almeida Casaleiro |
Publisher | : Springer |
Total Pages | : 166 |
Release | : 2018-10-29 |
Genre | : Technology & Engineering |
ISBN | : 3030007405 |
This book presents a tutorial review of van der Pol model, a universal oscillator model for the analysis of modern RC−oscillators in weak and strong nonlinear regimes. A detailed analysis of the injection locking in van der Pol oscillators is also presented. The relation between the van der Pol parameters and several circuit implementations in CMOS nanotechnology is given, showing that this theory is very useful in the optimization of oscillator key parameters, such as: frequency, amplitude and phase relationship. The authors discuss three different examples: active coupling RC−oscillators, capacitive coupling RC−oscillators, and two-integrator oscillator working in the sinusoidal regime. · Provides a detailed tutorial on the van der Pol oscillator model, which can be the basis for the analysis of modern RC−oscillators in weak and strong nonlinear regimes; · Demonstrations the relationship between the van der Pol parameters and several circuit implementations in CMOS nanotechnology, showing that this theory is a powerful tool in the optimization of key oscillator parameters; · Provides three circuit prototypes implemented in modern CMOS nanotechnology in the GHz range, with applications in low area, low power, low cost, wireless sensor network (WSN) applications (e.g. IoT, BLE).
Author | : David del Rio |
Publisher | : Springer |
Total Pages | : 269 |
Release | : 2018-07-07 |
Genre | : Technology & Engineering |
ISBN | : 3319932810 |
This book presents design methods and considerations for digitally-assisted wideband millimeter-wave transmitters. It addresses comprehensively both RF design and digital implementation simultaneously, in order to design energy- and cost-efficient high-performance transmitters for mm-wave high-speed communications. It covers the complete design flow, from link budget assessment to the transistor-level design of different RF front-end blocks, such as mixers and power amplifiers, presenting different alternatives and discussing the existing trade-offs. The authors also analyze the effect of the imperfections of these blocks in the overall performance, while describing techniques to correct and compensate for them digitally. Well-known techniques are revisited, and some new ones are described, giving examples of their applications and proving them in real integrated circuits.
Author | : Heba Abunahla |
Publisher | : Springer |
Total Pages | : 118 |
Release | : 2017-09-18 |
Genre | : Technology & Engineering |
ISBN | : 3319656996 |
This book provides readers with a single-source guide to fabricate, characterize and model memristor devices for sensing applications. The authors describe a correlated, physics-based model to simulate and predict the behavior of devices fabricated with different oxide materials, active layer thickness, and operating temperature. They discuss memristors from various perspectives, including working mechanisms, different synthesis methods, characterization procedures, and device employment in radiation sensing and security applications.
Author | : Yan Lu |
Publisher | : Springer |
Total Pages | : 167 |
Release | : 2017-08-15 |
Genre | : Technology & Engineering |
ISBN | : 9811026157 |
This book presents state-of-the-art analog and power management IC design techniques for various wireless power transfer (WPT) systems. To create elaborate power management solutions, circuit designers require an in-depth understanding of the characteristics of each converter and regulator in the power chain. This book addresses WPT design issues at both system- and circuit-level, and serves as a handbook offering design insights for research students and engineers in the integrated power electronics area.
Author | : Kamran Souri |
Publisher | : Springer |
Total Pages | : 133 |
Release | : 2017-10-05 |
Genre | : Technology & Engineering |
ISBN | : 3319623079 |
This book describes the design and implementation of energy-efficient smart (digital output) temperature sensors in CMOS technology. To accomplish this, a new readout topology, namely the zoom-ADC, is presented. It combines a coarse SAR-ADC with a fine Sigma-Delta (SD) ADC. The digital result obtained from the coarse ADC is used to set the reference levels of the SD-ADC, thereby zooming its full-scale range into a small region around the input signal. This technique considerably reduces the SD-ADC’s full-scale range, and notably relaxes the number of clock cycles needed for a given resolution, as well as the DC-gain and swing of the loop-filter. Both conversion time and power-efficiency can be improved, which results in a substantial improvement in energy-efficiency. Two BJT-based sensor prototypes based on 1st-order and 2nd-order zoom-ADCs are presented. They both achieve inaccuracies of less than ±0.2°C over the military temperature range (-55°C to 125°C). A prototype capable of sensing temperatures up to 200°C is also presented. As an alternative to BJTs, sensors based on dynamic threshold MOSTs (DTMOSTs) are also presented. It is shown that DTMOSTs are capable of achieving low inaccuracy (±0.4°C over the military temperature range) as well as sub-1V operation, making them well suited for use in modern CMOS processes.
Author | : Gilbert Strang |
Publisher | : SIAM |
Total Pages | : 556 |
Release | : 1996-10-01 |
Genre | : Technology & Engineering |
ISBN | : 9780961408879 |
A comprehensive treatment of wavelets for both engineers and mathematicians.