Computation of Laminar and Turbulent Flow in Curved Ducts, Channels, and Pipes Using the Navier-Stokes Equations

Computation of Laminar and Turbulent Flow in Curved Ducts, Channels, and Pipes Using the Navier-Stokes Equations
Author: R. C. Buggeln
Publisher:
Total Pages: 84
Release: 1980
Genre: Laminar flow
ISBN:

Both laminar and turbulent flows in strongly curved ducts, channels, and pipes are studied by numerical methods. The study concentrates on the curved square-duct geometry and flow conditions for which detailed measurements have been obtained recently by Taylor, Whitelaw, and Yianneskis. The solution methodology encompasses solution of the compressible ensemble-averaged Navier-Stokes equations at low Mach number using a split linearized block implicit (LBI) scheme, and rapid convergence on the order of 80 noniterative time steps is obtained. The treatment of turbulent flows includes resolution of the viscous sublayer region. A series of solutions for both laminar and turbulent flow and for both two- and three-dimensional geometries of the same curvature are presented. The accuracy of these solutions is explored by mesh refinement and by comparison with experiment. In summary, good qualitative and reasonable quantitative agreement between solution and experiment is obtained. Collectively, this sequence of results serves to clarify the physical structure of these flows and hence how grid selection procedures might be adjusted to improve the numerical accuracy and experimental agreement. For a three-dimensional flow of considerable complexity, the relatively good agreement with experiment obtained for the turbulent flow case despite a coarse grid must be regarded as encouraging. (Author).

The Structure of High Reynolds Number Turbulent Boundary Layers, Part A.

The Structure of High Reynolds Number Turbulent Boundary Layers, Part A.
Author:
Publisher:
Total Pages: 0
Release: 1994
Genre:
ISBN:

We provide a summary of our accomplishments under a three-year 'mini URI' program in collaboration with researchers at Yale and Princeton universities. Whereas the central theme of the program is high Reynolds number wall-bounded turbulence, studies at Penn State included (1) analysis of fundamental issues of scale interactions in high Reynolds number turbulence dynamics, (2) the use of the wavelet decomposition and generalized filtering techniques in describing the relationship between the Fourier-spectral description of scale and the physical-space description of structure, (3) direct numerical simulation of passive scalar sources in low Reynolds number turbulent boundary layers and analysis of scalar evolution in relationship to laboratory data, (4) the relationship between homogeneous turbulent shear flow and the inertial sublayer in high Reynolds number turbulent boundary layers, and (5) the development and application of sophisticated data analysis techniques which intimately combine graphical and quantitative analysis within a fully interactive 'Analytical Environment'. A brief summary of the accomplishments in each area of development is presented. Turbulence, Turbulent boundary layers, Shear flows.

Calculation of Complex Turbulent Flows

Calculation of Complex Turbulent Flows
Author: George Tzabiras
Publisher: Witpress
Total Pages: 424
Release: 2000
Genre: Science
ISBN:

A selection of invited chapters focusing on developments in the application of Computational Fluid Dynamics (CFD) to compressible or incompressible flows dominated by turbulence effects. These may be applied to complex geometrical configurations or flow-fields in simpler geometries requiring higher-order turbulence modelling, or suitably modified low-order models, to calculate crucial parameters such as instabilities, transition, separation, accurate description of velocity and scalar fields, and local and total forces.