Safe Handling of Tritium

Safe Handling of Tritium
Author: International Atomic Energy Agency
Publisher:
Total Pages: 148
Release: 1991
Genre: Business & Economics
ISBN:

This publication contains information on the dosimetry and monitoring of tritium, the use of protective clothing for work with tritium, safe practices in tritium handling laboratories and details of tritium compatible materials. The information has been compiled from experience in the various applications of tritium and should represent valuable source material to all users of tritium, including those involved in fusion R&D.

Tritium: Fuel of Fusion Reactors

Tritium: Fuel of Fusion Reactors
Author: Tetsuo Tanabe
Publisher: Springer
Total Pages: 365
Release: 2016-12-05
Genre: Technology & Engineering
ISBN: 4431564608

This book focuses on tritium as a fuel for fusion reactors and a next-generation energy source. Following an introduction of tritium as a hydrogen radioisotope, important issues involved in establishing safe and economical tritium fuel cycles including breeding for a fusion reactor are summarized; these include the handling of large amounts of tritium: confinement, leakage, contamination, permeation, regulation and tritium accountancy, and impacts on surrounding areas. Targeting and encouraging the students and technicians who will design and operate fusion reactors in the near future, this book offers a valuable resource on tritium science and technology.

Safety in Tritium Handling Technology

Safety in Tritium Handling Technology
Author: F. Mannone
Publisher: Springer Science & Business Media
Total Pages: 241
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 9401119104

The use of tritium as a basic fuel material in a thermonuclear fusion reactor raises particular safety issues due to the combined effects of its physico chemical properties and radioactive nature. Furthermore the possibility of attaining further significant progresses in developing and demonstrating the feasibility of tritium burning devices relies on the handling of tritium macroquantities, say ten grammes, in a safe and reliable manner. It is also undoubted that, apart from technological constraints, any validation and exploitation of thermonuclear fusion as a source of energy will be strongly conditioned by the application of stringent operational and environmental safety criteria as it derives from norms of the modern legislation and public acceptance considerations. Even if the safe handling of tritium has already been demonstrated to be feasible on a full fuel cycle scale, it is unanimously recognized that further efforts are still to be concentrated on the improvement of current concepts and development of advanced technologies. Some of the areas requiring substantial additional efforts are plasma exhaust fuel c1ean-up, tritium pellet injection, processing of inert carrier gas, development of large free-oil pumps,tritlUm process analytics, development of large detritiation systems, beryllium-tritium interaction studies, tritium hold-up studies in getter beds, adsorbers and structural materials, tritium recovery from first wall, structural and breeder materials for minimizing tritiated waste arising,tritium storage technology, tritiated waste disposal technolo~y, methodology for routine tritium accountancy,etc . . Most of them are intrinsically related to the safety requirement of tritium technology.

Tritium in Fusion

Tritium in Fusion
Author: Silvano Tosti
Publisher:
Total Pages: 0
Release: 2013
Genre: Nuclear fusion
ISBN: 9781624172700

Tritium is a radioactive hydrogen isotope that is of interest for both civil and military applications. Most of tritium is used for the realisation and the maintenance of fission and fusion nuclear weapons while only a minor fraction of tritium is commercially used. Among the non-military uses; medical diagnostic and research in pharmaceutical laboratories are discussed. For research purposes, tritium is also used in fusion power machines and, in particular, the development of processes for tritium recovery in the fusion fuel cycle has been the object of significant technological improvements. This book provides an overview on the processes for the production and treatment of tritium in nuclear fusion machines as well as the aspects of measurement, dose assessment and safety of tritium with a focus on the impact to human health and the environment.

Tritium and Helium-3 in Metals

Tritium and Helium-3 in Metals
Author: Rainer Lässer
Publisher: Springer Science & Business Media
Total Pages: 167
Release: 2013-03-13
Genre: Science
ISBN: 364273510X

Hydrogen can behave as an alkaline metal or a halogen and can react with nearly all elements of the periodic table. This explains the large number of metal hydrides. Since T. Graham's first observation of the absorption of hydrogen in palladium in 1866 the behaviour of hydrogen in metals has been studied very extensively. The interest was motivated by the possible application of metal-hydrogen systems in new technologies (e.g., moderator material in nuclear fission reactors, reversible storage material for thermal energy and large amounts of hydrogen) and by the fact that metal hydrides show very exciting physical properties (e.g., superconductivity, quantum diffusion, order-disorder transitions, phase diagrams, etc.). Many of these properties have been determined for the stable hydrogen isotopes Hand D in various metals. In comparison, very little is known about the behaviour of the ra dioactive isotope tritium in metals. This book is a first attempt to summarize part of the knowledge of tritium gained in the last few years. In addition to the task of presenting the properties of tritium in metals, I have tried to compare these data with those of protium and deuterium. Furthermore, helium-3 is connected inse parably with tritium via the tritium decay. Therefore one chapter of this book is solely devoted to the curious properties of helium in metals caused mainly by its negligible solubility.

Nuclear Energy

Nuclear Energy
Author: Raymond L. Murray
Publisher: Elsevier
Total Pages: 462
Release: 2013-10-22
Genre: Technology & Engineering
ISBN: 1483287866

This expanded, revised, and updated fourth edition of Nuclear Energy maintains the tradition of providing clear and comprehensive coverage of all aspects of the subject, with emphasis on the explanation of trends and developments. As in earlier editions, the book is divided into three parts that achieve a natural flow of ideas: Basic Concepts, including the fundamentals of energy, particle interactions, fission, and fusion; Nuclear Systems, including accelerators, isotope separators, detectors, and nuclear reactors; and Nuclear Energy and Man, covering the many applications of radionuclides, radiation, and reactors, along with a discussion of wastes and weapons. A minimum of mathematical background is required, but there is ample opportunity to learn characteristic numbers through the illustrative calculations and the exercises. An updated Solution Manual is available to the instructor. A new feature to aid the student is a set of some 50 Computer Exercises, using a diskette of personal computer programs in BASIC and spreadsheet, supplied by the author at a nominal cost. The book is of principal value as an introduction to nuclear science and technology for early college students, but can be of benefit to science teachers and lecturers, nuclear utility trainees and engineers in other fields.

Preparation of Compounds Labeled with Tritium and Carbon-14

Preparation of Compounds Labeled with Tritium and Carbon-14
Author: Rolf Voges
Publisher: John Wiley & Sons
Total Pages: 682
Release: 2009-03-12
Genre: Science
ISBN: 9780470743430

Compounds labeled with carbon-14 and tritium are indispensable tools for research in biomedical sciences, discovery and development of pharmaceuticals and agrochemicals. Preparation of Compounds Labeled with Tritium and Carbon-14 is a comprehensive, authoritative and up-to-date discussion of the strategies, synthetic approaches, reactions techniques, and resources for the preparation of compounds labeled with either of these isotopes. A large number of examples are presented for the use of isotopic sources and building blocks in the preparation of labeled target compounds, illustrating the range of possibilities for embedding isotopic labels in selected moieties of complex structures. Topics include: Formulation of synthetic strategies for preparing labeled compounds Isotope exchange methods and synthetic alternatives for preparing tritiated compounds In-depth discussion of carbon-14 building blocks and their utility in synthesis Preparation of enantiomerically pure isotopically labeled compounds Applications of biotransformations Preparation of Compounds Labeled with Tritium and Carbon-14 is an essential guide to the specialist strategies and tactics used by chemists to prepare compounds tagged with theradioactive atoms carbon-14 and tritium.

An Assessment of the Prospects for Inertial Fusion Energy

An Assessment of the Prospects for Inertial Fusion Energy
Author: National Research Council
Publisher: National Academies Press
Total Pages: 247
Release: 2013-07-05
Genre: Science
ISBN: 0309272246

The potential for using fusion energy to produce commercial electric power was first explored in the 1950s. Harnessing fusion energy offers the prospect of a nearly carbon-free energy source with a virtually unlimited supply of fuel. Unlike nuclear fission plants, appropriately designed fusion power plants would not produce the large amounts of high-level nuclear waste that requires long-term disposal. Due to these prospects, many nations have initiated research and development (R&D) programs aimed at developing fusion as an energy source. Two R&D approaches are being explored: magnetic fusion energy (MFE) and inertial fusion energy (IFE). An Assessment of the Prospects for Inertial Fusion Energy describes and assesses the current status of IFE research in the United States; compares the various technical approaches to IFE; and identifies the scientific and engineering challenges associated with developing inertial confinement fusion (ICF) in particular as an energy source. It also provides guidance on an R&D roadmap at the conceptual level for a national program focusing on the design and construction of an inertial fusion energy demonstration plant.

Magnetic Fusion Technology

Magnetic Fusion Technology
Author: Thomas J. Dolan
Publisher: Springer Science & Business Media
Total Pages: 816
Release: 2014-02-10
Genre: Technology & Engineering
ISBN: 1447155564

Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: • magnet systems, • plasma heating systems, • control systems, • energy conversion systems, • advanced materials development, • vacuum systems, • cryogenic systems, • plasma diagnostics, • safety systems, and • power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.