Cubature Formulas & Modern Analysis

Cubature Formulas & Modern Analysis
Author: Igor Sobolev
Publisher: CRC Press
Total Pages: 404
Release: 1993-04-15
Genre: Science
ISBN: 9782881248412

Translated from the Russian revised and updated 1988 edition. Cubature formulas, for calculating the volumes of bodies in multidimensional space, were named by analogy with quadrature formulas, used to calculate the areas of plane figures. Topics include basic concepts and formulations, the polyharmonic equation, simple problems of the theory of computations, order of convergence of cubature formulas, considering a regular boundary layer, optimal formulas, and formulas for rational polyhedra. Annotation copyright by Book News, Inc., Portland, OR

The Theory of Cubature Formulas

The Theory of Cubature Formulas
Author: S.L. Sobolev
Publisher: Springer Science & Business Media
Total Pages: 427
Release: 2013-06-29
Genre: Mathematics
ISBN: 9401589135

This volume considers various methods for constructing cubature and quadrature formulas of arbitrary degree. These formulas are intended to approximate the calculation of multiple and conventional integrals over a bounded domain of integration. The latter is assumed to have a piecewise-smooth boundary and to be arbitrary in other aspects. Particular emphasis is placed on invariant cubature formulas and those for a cube, a simplex, and other polyhedra. Here, the techniques of functional analysis and partial differential equations are applied to the classical problem of numerical integration, to establish many important and deep analytical properties of cubature formulas. The prerequisites of the theory of many-dimensional discrete function spaces and the theory of finite differences are concisely presented. Special attention is paid to constructing and studying the optimal cubature formulas in Sobolev spaces. As an asymptotically optimal sequence of cubature formulas, a many-dimensional abstraction of the Gregory quadrature is indicated. Audience: This book is intended for researchers having a basic knowledge of functional analysis who are interested in the applications of modern theoretical methods to numerical mathematics.

The Bochner-Martinelli Integral and Its Applications

The Bochner-Martinelli Integral and Its Applications
Author: Alexander M. Kytmanov
Publisher: Birkhäuser
Total Pages: 318
Release: 2012-12-06
Genre: Mathematics
ISBN: 303489094X

The Bochner-Martinelli integral representation for holomorphic functions or'sev eral complex variables (which has already become classical) appeared in the works of Martinelli and Bochner at the beginning of the 1940's. It was the first essen tially multidimensional representation in which the integration takes place over the whole boundary of the domain. This integral representation has a universal 1 kernel (not depending on the form of the domain), like the Cauchy kernel in e . However, in en when n > 1, the Bochner-Martinelli kernel is harmonic, but not holomorphic. For a long time, this circumstance prevented the wide application of the Bochner-Martinelli integral in multidimensional complex analysis. Martinelli and Bochner used their representation to prove the theorem of Hartogs (Osgood Brown) on removability of compact singularities of holomorphic functions in en when n > 1. In the 1950's and 1960's, only isolated works appeared that studied the boundary behavior of Bochner-Martinelli (type) integrals by analogy with Cauchy (type) integrals. This study was based on the Bochner-Martinelli integral being the sum of a double-layer potential and the tangential derivative of a single-layer potential. Therefore the Bochner-Martinelli integral has a jump that agrees with the integrand, but it behaves like the Cauchy integral under approach to the boundary, that is, somewhat worse than the double-layer potential. Thus, the Bochner-Martinelli integral combines properties of the Cauchy integral and the double-layer potential.

Numerical Analysis: Historical Developments in the 20th Century

Numerical Analysis: Historical Developments in the 20th Century
Author: C. Brezinski
Publisher: Elsevier
Total Pages: 512
Release: 2012-12-02
Genre: Mathematics
ISBN: 0444598588

Numerical analysis has witnessed many significant developments in the 20th century. This book brings together 16 papers dealing with historical developments, survey papers and papers on recent trends in selected areas of numerical analysis, such as: approximation and interpolation, solution of linear systems and eigenvalue problems, iterative methods, quadrature rules, solution of ordinary-, partial- and integral equations. The papers are reprinted from the 7-volume project of the Journal of Computational and Applied Mathematics on '/homepage/sac/cam/na2000/index.htmlNumerical Analysis 2000'. An introductory survey paper deals with the history of the first courses on numerical analysis in several countries and with the landmarks in the development of important algorithms and concepts in the field.

Introduction to Radon Transforms

Introduction to Radon Transforms
Author: Boris Rubin
Publisher: Cambridge University Press
Total Pages: 595
Release: 2015-11-12
Genre: Mathematics
ISBN: 0521854598

A comprehensive introduction to basic operators of integral geometry and the relevant harmonic analysis for students and researchers.