An Introduction To The Numerical Simulation Of Stochastic Differential Equations
Download An Introduction To The Numerical Simulation Of Stochastic Differential Equations full books in PDF, epub, and Kindle. Read online free An Introduction To The Numerical Simulation Of Stochastic Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Peter E. Kloeden |
Publisher | : Springer Science & Business Media |
Total Pages | : 666 |
Release | : 2013-04-17 |
Genre | : Mathematics |
ISBN | : 3662126168 |
The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP
Author | : Desmond J. Higham |
Publisher | : |
Total Pages | : |
Release | : 2020-12 |
Genre | : |
ISBN | : 9781611976427 |
Author | : Simo Särkkä |
Publisher | : Cambridge University Press |
Total Pages | : 327 |
Release | : 2019-05-02 |
Genre | : Business & Economics |
ISBN | : 1316510085 |
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Author | : Lawrence C. Evans |
Publisher | : American Mathematical Soc. |
Total Pages | : 161 |
Release | : 2012-12-11 |
Genre | : Mathematics |
ISBN | : 1470410540 |
These notes provide a concise introduction to stochastic differential equations and their application to the study of financial markets and as a basis for modeling diverse physical phenomena. They are accessible to non-specialists and make a valuable addition to the collection of texts on the topic. --Srinivasa Varadhan, New York University This is a handy and very useful text for studying stochastic differential equations. There is enough mathematical detail so that the reader can benefit from this introduction with only a basic background in mathematical analysis and probability. --George Papanicolaou, Stanford University This book covers the most important elementary facts regarding stochastic differential equations; it also describes some of the applications to partial differential equations, optimal stopping, and options pricing. The book's style is intuitive rather than formal, and emphasis is made on clarity. This book will be very helpful to starting graduate students and strong undergraduates as well as to others who want to gain knowledge of stochastic differential equations. I recommend this book enthusiastically. --Alexander Lipton, Mathematical Finance Executive, Bank of America Merrill Lynch This short book provides a quick, but very readable introduction to stochastic differential equations, that is, to differential equations subject to additive ``white noise'' and related random disturbances. The exposition is concise and strongly focused upon the interplay between probabilistic intuition and mathematical rigor. Topics include a quick survey of measure theoretic probability theory, followed by an introduction to Brownian motion and the Ito stochastic calculus, and finally the theory of stochastic differential equations. The text also includes applications to partial differential equations, optimal stopping problems and options pricing. This book can be used as a text for senior undergraduates or beginning graduate students in mathematics, applied mathematics, physics, financial mathematics, etc., who want to learn the basics of stochastic differential equations. The reader is assumed to be fairly familiar with measure theoretic mathematical analysis, but is not assumed to have any particular knowledge of probability theory (which is rapidly developed in Chapter 2 of the book).
Author | : Peter Eris Kloeden |
Publisher | : Springer Science & Business Media |
Total Pages | : 304 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642579132 |
This book provides an easily accessible, computationally-oriented introduction into the numerical solution of stochastic differential equations using computer experiments. It develops in the reader an ability to apply numerical methods solving stochastic differential equations. It also creates an intuitive understanding of the necessary theoretical background. Software containing programs for over 100 problems is available online.
Author | : Eckhard Platen |
Publisher | : Springer Science & Business Media |
Total Pages | : 868 |
Release | : 2010-07-23 |
Genre | : Mathematics |
ISBN | : 364213694X |
In financial and actuarial modeling and other areas of application, stochastic differential equations with jumps have been employed to describe the dynamics of various state variables. The numerical solution of such equations is more complex than that of those only driven by Wiener processes, described in Kloeden & Platen: Numerical Solution of Stochastic Differential Equations (1992). The present monograph builds on the above-mentioned work and provides an introduction to stochastic differential equations with jumps, in both theory and application, emphasizing the numerical methods needed to solve such equations. It presents many new results on higher-order methods for scenario and Monte Carlo simulation, including implicit, predictor corrector, extrapolation, Markov chain and variance reduction methods, stressing the importance of their numerical stability. Furthermore, it includes chapters on exact simulation, estimation and filtering. Besides serving as a basic text on quantitative methods, it offers ready access to a large number of potential research problems in an area that is widely applicable and rapidly expanding. Finance is chosen as the area of application because much of the recent research on stochastic numerical methods has been driven by challenges in quantitative finance. Moreover, the volume introduces readers to the modern benchmark approach that provides a general framework for modeling in finance and insurance beyond the standard risk-neutral approach. It requires undergraduate background in mathematical or quantitative methods, is accessible to a broad readership, including those who are only seeking numerical recipes, and includes exercises that help the reader develop a deeper understanding of the underlying mathematics.
Author | : Sasha Cyganowski |
Publisher | : Springer Science & Business Media |
Total Pages | : 323 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642561446 |
This is an introduction to probabilistic and statistical concepts necessary to understand the basic ideas and methods of stochastic differential equations. Based on measure theory, which is introduced as smoothly as possible, it provides practical skills in the use of MAPLE in the context of probability and its applications. It offers to graduates and advanced undergraduates an overview and intuitive background for more advanced studies.
Author | : Desmond J. Higham |
Publisher | : SIAM |
Total Pages | : 293 |
Release | : 2021-01-28 |
Genre | : Mathematics |
ISBN | : 161197643X |
This book provides a lively and accessible introduction to the numerical solution of stochastic differential equations with the aim of making this subject available to the widest possible readership. It presents an outline of the underlying convergence and stability theory while avoiding technical details. Key ideas are illustrated with numerous computational examples and computer code is listed at the end of each chapter. The authors include 150 exercises, with solutions available online, and 40 programming tasks. Although introductory, the book covers a range of modern research topics, including Itô versus Stratonovich calculus, implicit methods, stability theory, nonconvergence on nonlinear problems, multilevel Monte Carlo, approximation of double stochastic integrals, and tau leaping for chemical and biochemical reaction networks. An Introduction to the Numerical Simulation of Stochastic Differential Equations is appropriate for undergraduates and postgraduates in mathematics, engineering, physics, chemistry, finance, and related disciplines, as well as researchers in these areas. The material assumes only a competence in algebra and calculus at the level reached by a typical first-year undergraduate mathematics class, and prerequisites are kept to a minimum. Some familiarity with basic concepts from numerical analysis and probability is also desirable but not necessary.
Author | : Raúl Toral |
Publisher | : John Wiley & Sons |
Total Pages | : 0 |
Release | : 2014-08-25 |
Genre | : Science |
ISBN | : 9783527411498 |
Stochastic Numerical Methods introduces at Master level the numerical methods that use probability or stochastic concepts to analyze random processes. The book aims at being rather general and is addressed at students of natural sciences (Physics, Chemistry, Mathematics, Biology, etc.) and Engineering, but also social sciences (Economy, Sociology, etc.) where some of the techniques have been used recently to numerically simulate different agent-based models. Examples included in the book range from phase-transitions and critical phenomena, including details of data analysis (extraction of critical exponents, finite-size effects, etc.), to population dynamics, interfacial growth, chemical reactions, etc. Program listings are integrated in the discussion of numerical algorithms to facilitate their understanding. From the contents: Review of Probability Concepts Monte Carlo Integration Generation of Uniform and Non-uniform Random Numbers: Non-correlated Values Dynamical Methods Applications to Statistical Mechanics Introduction to Stochastic Processes Numerical Simulation of Ordinary and Partial Stochastic Differential Equations Introduction to Master Equations Numerical Simulations of Master Equations Hybrid Monte Carlo Generation of n-Dimensional Correlated Gaussian Variables Collective Algorithms for Spin Systems Histogram Extrapolation Multicanonical Simulations
Author | : Rene Carmona |
Publisher | : SIAM |
Total Pages | : 263 |
Release | : 2016-02-18 |
Genre | : Mathematics |
ISBN | : 1611974240 |
The goal of this textbook is to introduce students to the stochastic analysis tools that play an increasing role in the probabilistic approach to optimization problems, including stochastic control and stochastic differential games. While optimal control is taught in many graduate programs in applied mathematics and operations research, the author was intrigued by the lack of coverage of the theory of stochastic differential games. This is the first title in SIAM?s Financial Mathematics book series and is based on the author?s lecture notes. It will be helpful to students who are interested in stochastic differential equations (forward, backward, forward-backward); the probabilistic approach to stochastic control (dynamic programming and the stochastic maximum principle); and mean field games and control of McKean?Vlasov dynamics. The theory is illustrated by applications to models of systemic risk, macroeconomic growth, flocking/schooling, crowd behavior, and predatory trading, among others.