An Introduction To Semilinear Evolution Equations
Download An Introduction To Semilinear Evolution Equations full books in PDF, epub, and Kindle. Read online free An Introduction To Semilinear Evolution Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Thierry Cazenave |
Publisher | : Oxford University Press |
Total Pages | : 204 |
Release | : 1998 |
Genre | : Computers |
ISBN | : 9780198502777 |
This book presents in a self-contained form the typical basic properties of solutions to semilinear evolutionary partial differential equations, with special emphasis on global properties. It has a didactic ambition and will be useful for an applied readership as well as theoretical researchers.
Author | : Thierry Cazenave |
Publisher | : |
Total Pages | : 186 |
Release | : 2006 |
Genre | : |
ISBN | : |
Author | : Raphael Kruse |
Publisher | : Springer |
Total Pages | : 188 |
Release | : 2013-11-18 |
Genre | : Mathematics |
ISBN | : 3319022318 |
In this book we analyze the error caused by numerical schemes for the approximation of semilinear stochastic evolution equations (SEEq) in a Hilbert space-valued setting. The numerical schemes considered combine Galerkin finite element methods with Euler-type temporal approximations. Starting from a precise analysis of the spatio-temporal regularity of the mild solution to the SEEq, we derive and prove optimal error estimates of the strong error of convergence in the first part of the book. The second part deals with a new approach to the so-called weak error of convergence, which measures the distance between the law of the numerical solution and the law of the exact solution. This approach is based on Bismut’s integration by parts formula and the Malliavin calculus for infinite dimensional stochastic processes. These techniques are developed and explained in a separate chapter, before the weak convergence is proven for linear SEEq.
Author | : Toka Diagana |
Publisher | : Springer |
Total Pages | : 199 |
Release | : 2018-10-23 |
Genre | : Mathematics |
ISBN | : 303000449X |
This book, which is a continuation of Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, presents recent trends and developments upon fractional, first, and second order semilinear difference and differential equations, including degenerate ones. Various stability, uniqueness, and existence results are established using various tools from nonlinear functional analysis and operator theory (such as semigroup methods). Various applications to partial differential equations and the dynamic of populations are amply discussed. This self-contained volume is primarily intended for advanced undergraduate and graduate students, post-graduates and researchers, but may also be of interest to non-mathematicians such as physicists and theoretically oriented engineers. It can also be used as a graduate text on evolution equations and difference equations and their applications to partial differential equations and practical problems arising in population dynamics. For completeness, detailed preliminary background on Banach and Hilbert spaces, operator theory, semigroups of operators, and almost periodic functions and their spectral theory are included as well.
Author | : Radu Precup |
Publisher | : Walter de Gruyter |
Total Pages | : 296 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3110269058 |
The text is intended for students who wish a concise and rapid introduction to some main topics in PDEs, necessary for understanding current research, especially in nonlinear PDEs. Organized on three parts, the book guides the reader from fundamental classical results, to some aspects of the modern theory and furthermore, to some techniques of nonlinear analysis. Compared to other introductory books in PDEs, this work clearly explains the transition from classical to generalized solutions and the natural way in which Sobolev spaces appear as completions of spaces of continuously differentiable functions with respect to energetic norms. Also, special attention is paid to the investigation of the solution operators associated to elliptic, parabolic and hyperbolic non-homogeneous equations anticipating the operator approach of nonlinear boundary value problems. Thus the reader is made to understand the role of linear theory for the analysis of nonlinear problems.
Author | : Bei Hu |
Publisher | : Springer Science & Business Media |
Total Pages | : 137 |
Release | : 2011-03-23 |
Genre | : Mathematics |
ISBN | : 3642184596 |
There is an enormous amount of work in the literature about the blow-up behavior of evolution equations. It is our intention to introduce the theory by emphasizing the methods while seeking to avoid massive technical computations. To reach this goal, we use the simplest equation to illustrate the methods; these methods very often apply to more general equations.
Author | : D Daners |
Publisher | : Chapman and Hall/CRC |
Total Pages | : 268 |
Release | : 1992-12-29 |
Genre | : Mathematics |
ISBN | : |
Part of the Pitman Research Notes in Mathematics series, this text covers: linear evolution equations of parabolic type; semilinear evolution equations of parabolic type; evolution equations and positivity; semilinear periodic evolution equations; and applications.
Author | : A.V. Babin |
Publisher | : Elsevier |
Total Pages | : 543 |
Release | : 1992-03-09 |
Genre | : Mathematics |
ISBN | : 0080875467 |
Problems, ideas and notions from the theory of finite-dimensional dynamical systems have penetrated deeply into the theory of infinite-dimensional systems and partial differential equations. From the standpoint of the theory of the dynamical systems, many scientists have investigated the evolutionary equations of mathematical physics. Such equations include the Navier-Stokes system, magneto-hydrodynamics equations, reaction-diffusion equations, and damped semilinear wave equations. Due to the recent efforts of many mathematicians, it has been established that the attractor of the Navier-Stokes system, which attracts (in an appropriate functional space) as t - ∞ all trajectories of this system, is a compact finite-dimensional (in the sense of Hausdorff) set. Upper and lower bounds (in terms of the Reynolds number) for the dimension of the attractor were found. These results for the Navier-Stokes system have stimulated investigations of attractors of other equations of mathematical physics. For certain problems, in particular for reaction-diffusion systems and nonlinear damped wave equations, mathematicians have established the existence of the attractors and their basic properties; furthermore, they proved that, as t - +∞, an infinite-dimensional dynamics described by these equations and systems uniformly approaches a finite-dimensional dynamics on the attractor U, which, in the case being considered, is the union of smooth manifolds. This book is devoted to these and several other topics related to the behaviour as t - ∞ of solutions for evolutionary equations.
Author | : Marcelo R. Ebert |
Publisher | : Birkhäuser |
Total Pages | : 473 |
Release | : 2018-02-23 |
Genre | : Mathematics |
ISBN | : 3319664565 |
This book provides an overview of different topics related to the theory of partial differential equations. Selected exercises are included at the end of each chapter to prepare readers for the “research project for beginners” proposed at the end of the book. It is a valuable resource for advanced graduates and undergraduate students who are interested in specializing in this area. The book is organized in five parts: In Part 1 the authors review the basics and the mathematical prerequisites, presenting two of the most fundamental results in the theory of partial differential equations: the Cauchy-Kovalevskaja theorem and Holmgren's uniqueness theorem in its classical and abstract form. It also introduces the method of characteristics in detail and applies this method to the study of Burger's equation. Part 2 focuses on qualitative properties of solutions to basic partial differential equations, explaining the usual properties of solutions to elliptic, parabolic and hyperbolic equations for the archetypes Laplace equation, heat equation and wave equation as well as the different features of each theory. It also discusses the notion of energy of solutions, a highly effective tool for the treatment of non-stationary or evolution models and shows how to define energies for different models. Part 3 demonstrates how phase space analysis and interpolation techniques are used to prove decay estimates for solutions on and away from the conjugate line. It also examines how terms of lower order (mass or dissipation) or additional regularity of the data may influence expected results. Part 4 addresses semilinear models with power type non-linearity of source and absorbing type in order to determine critical exponents: two well-known critical exponents, the Fujita exponent and the Strauss exponent come into play. Depending on concrete models these critical exponents divide the range of admissible powers in classes which make it possible to prove quite different qualitative properties of solutions, for example, the stability of the zero solution or blow-up behavior of local (in time) solutions. The last part features selected research projects and general background material.
Author | : Ali Taheri |
Publisher | : Oxford University Press |
Total Pages | : 481 |
Release | : 2015-07-30 |
Genre | : Mathematics |
ISBN | : 0191047848 |
This is a book written primarily for graduate students and early researchers in the fields of Analysis and Partial Differential Equations (PDEs). Coverage of the material is essentially self-contained, extensive and novel with great attention to details and rigour. The strength of the book primarily lies in its clear and detailed explanations, scope and coverage, highlighting and presenting deep and profound inter-connections between different related and seemingly unrelated disciplines within classical and modern mathematics and above all the extensive collection of examples, worked-out and hinted exercises. There are well over 700 exercises of varying level leading the reader from the basics to the most advanced levels and frontiers of research. The book can be used either for independent study or for a year-long graduate level course. In fact it has its origin in a year-long graduate course taught by the author in Oxford in 2004-5 and various parts of it in other institutions later on. A good number of distinguished researchers and faculty in mathematics worldwide have started their research career from the course that formed the basis for this book.