An Introduction to Quasigroups and Their Representations

An Introduction to Quasigroups and Their Representations
Author: Jonathan D. H. Smith
Publisher: CRC Press
Total Pages: 353
Release: 2006-11-15
Genre: Mathematics
ISBN: 1420010638

Collecting results scattered throughout the literature into one source, An Introduction to Quasigroups and Their Representations shows how representation theories for groups are capable of extending to general quasigroups and illustrates the added depth and richness that result from this extension. To fully understand representation theory,

Group Matrices, Group Determinants and Representation Theory

Group Matrices, Group Determinants and Representation Theory
Author: Kenneth W. Johnson
Publisher: Springer Nature
Total Pages: 400
Release: 2019-11-08
Genre: Mathematics
ISBN: 3030283003

This book sets out an account of the tools which Frobenius used to discover representation theory for nonabelian groups and describes its modern applications. It provides a new viewpoint from which one can examine various aspects of representation theory and areas of application, such as probability theory and harmonic analysis. For example, the focal objects of this book, group matrices, can be thought of as a generalization of the circulant matrices which are behind many important algorithms in information science. The book is designed to appeal to several audiences, primarily mathematicians working either in group representation theory or in areas of mathematics where representation theory is involved. Parts of it may be used to introduce undergraduates to representation theory by studying the appealing pattern structure of group matrices. It is also intended to attract readers who are curious about ideas close to the heart of group representation theory, which do not usually appear in modern accounts, but which offer new perspectives.

Nonassociative Mathematics and its Applications

Nonassociative Mathematics and its Applications
Author: Petr Vojtěchovský
Publisher: American Mathematical Soc.
Total Pages: 310
Release: 2019-01-14
Genre: Mathematics
ISBN: 1470442450

Nonassociative mathematics is a broad research area that studies mathematical structures violating the associative law x(yz)=(xy)z. The topics covered by nonassociative mathematics include quasigroups, loops, Latin squares, Lie algebras, Jordan algebras, octonions, racks, quandles, and their applications. This volume contains the proceedings of the Fourth Mile High Conference on Nonassociative Mathematics, held from July 29–August 5, 2017, at the University of Denver, Denver, Colorado. Included are research papers covering active areas of investigation, survey papers covering Leibniz algebras, self-distributive structures, and rack homology, and a sampling of applications ranging from Yang-Mills theory to the Yang-Baxter equation and Laver tables. An important aspect of nonassociative mathematics is the wide range of methods employed, from purely algebraic to geometric, topological, and computational, including automated deduction, all of which play an important role in this book.

Some Results on Neutrosophic Triplet Group and Their Applications

Some Results on Neutrosophic Triplet Group and Their Applications
Author: Tèmítópé Gbóláhàn Jaíyéolá
Publisher: Infinite Study
Total Pages: 14
Release: 2018-11-01
Genre: Mathematics
ISBN:

This article is based on new developments on a neutrosophic triplet group (NTG) and applications earlier introduced in 2016 by Smarandache and Ali. NTG sprang up from neutrosophic triplet set X: a collection of triplets (b, neut(b), anti(b)) for an b ∈ X that obeys certain axioms (existence of neutral(s) and opposite(s)). Some results that are true in classical groups were investigated in NTG and were shown to be either universally true in NTG or true in some peculiar types of NTG. Distinguishing features between an NTG and some other algebraic structures such as: generalized group (GG), quasigroup, loop and group were investigated. Some neutrosophic triplet subgroups (NTSGs) of a neutrosophic triplet group were studied. Applications of the neutrosophic triplet set, and our results on NTG in relation to management and sports, are highlighted and discussed.

Elements of Quasigroup Theory and Applications

Elements of Quasigroup Theory and Applications
Author: Victor Shcherbacov
Publisher: CRC Press
Total Pages: 599
Release: 2017-05-12
Genre: Computers
ISBN: 1498721567

Understanding Interaction is a book that explores the interaction between people and technology, in the broader context of the relations between the human made and the natural environments. It is not just about digital technologies – our computers, smart phones, the Internet – but all our technologies such as mechanical, electrical and electronic. Our ancestors started creating mechanical tools and shaping their environments millions of years ago, developing cultures and languages, which in turn influenced our evolution. Volume 1 of Understanding Interaction looks into this deep history – starting from the tool creating period (the longest and most influential on our physical and mental capacities), to the settlement period (agriculture, domestication, villages and cities, written language), the industrial period (science, engineering, reformation and renaissance), and finally the communication period (mass media, digital technologies, global networks). Volume 2 looks into humans in interaction – our physiology, anatomy, neurology, psychology, how we experience and influence the world, and how we (think we) think. From this transdisciplinary understanding, design approaches and frameworks are presented, to potentially guide future developments and innovations. The aim of the book is to be guide and inspiration for designers, artists, engineers, psychologists, media producers, social scientists etc., and as such be useful for both novices and more experienced practitioners.

Computational Science and Its Applications - ICCSA 2010

Computational Science and Its Applications - ICCSA 2010
Author: David Taniar
Publisher: Springer
Total Pages: 587
Release: 2010-04-03
Genre: Computers
ISBN: 3642121799

This four-volume set synthesizes the International Conference on Computational Science and Its Applications, ICCSA 2010. Topics include computational methods, algorithms and scientific application, high performance computing and networks, and more.

Mathematical Combinatorics, Vol. 2/2011

Mathematical Combinatorics, Vol. 2/2011
Author: Linfan Mao
Publisher: Infinite Study
Total Pages: 144
Release:
Genre:
ISBN: 1599731576

Papers on Duality Theorems of Multiobjective Generalized Disjunctive Fuzzy Nonlinear Fractional Programming, Plick Graphs with Crossing Number 1, Surface Embeddability of Graphs via Joint Trees, Common Fixed Points for Pairs of Weakly Compatible Mappings, Pathos Semitotal and Total Block Graph of a Tree, and other topics. Contributors: Bahaddin Bukcu, Murat Kemal Karacan, D. Nural Yuksel, Chandrashekar Adiga, C. S. Shivakumar Swamy, Hassan Jolany, Hossein Mohebbi, R. Eizadi Alikelaye, and others.

International Journal of Mathematical Combinatorics, Volume 2, 2011

International Journal of Mathematical Combinatorics, Volume 2, 2011
Author: Linfan Mao
Publisher: Infinite Study
Total Pages: 144
Release:
Genre: Mathematics
ISBN:

The mathematical combinatorics is a subject that applying combinatorial notion to all mathematics and all sciences for understanding the reality of things in the universe. The International J. Mathematical Combinatorics is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly, which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandache multi-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.

Collected Papers. Volume VIII

Collected Papers. Volume VIII
Author: Florentin Smarandache
Publisher: Infinite Study
Total Pages: 1002
Release: 2022-04-01
Genre: Mathematics
ISBN:

This eighth volume of Collected Papers includes 75 papers comprising 973 pages on (theoretic and applied) neutrosophics, written between 2010-2022 by the author alone or in collaboration with the following 102 co-authors (alphabetically ordered) from 24 countries: Mohamed Abdel-Basset, Abduallah Gamal, Firoz Ahmad, Ahmad Yusuf Adhami, Ahmed B. Al-Nafee, Ali Hassan, Mumtaz Ali, Akbar Rezaei, Assia Bakali, Ayoub Bahnasse, Azeddine Elhassouny, Durga Banerjee, Romualdas Bausys, Mircea Boșcoianu, Traian Alexandru Buda, Bui Cong Cuong, Emilia Calefariu, Ahmet Çevik, Chang Su Kim, Victor Christianto, Dae Wan Kim, Daud Ahmad, Arindam Dey, Partha Pratim Dey, Mamouni Dhar, H. A. Elagamy, Ahmed K. Essa, Sudipta Gayen, Bibhas C. Giri, Daniela Gîfu, Noel Batista Hernández, Hojjatollah Farahani, Huda E. Khalid, Irfan Deli, Saeid Jafari, Tèmítópé Gbóláhàn Jaíyéolá, Sripati Jha, Sudan Jha, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, M. Karthika, Kawther F. Alhasan, Giruta Kazakeviciute-Januskeviciene, Qaisar Khan, Kishore Kumar P K, Prem Kumar Singh, Ranjan Kumar, Maikel Leyva-Vázquez, Mahmoud Ismail, Tahir Mahmood, Hafsa Masood Malik, Mohammad Abobala, Mai Mohamed, Gunasekaran Manogaran, Seema Mehra, Kalyan Mondal, Mohamed Talea, Mullai Murugappan, Muhammad Akram, Muhammad Aslam Malik, Muhammad Khalid Mahmood, Nivetha Martin, Durga Nagarajan, Nguyen Van Dinh, Nguyen Xuan Thao, Lewis Nkenyereya, Jagan M. Obbineni, M. Parimala, S. K. Patro, Peide Liu, Pham Hong Phong, Surapati Pramanik, Gyanendra Prasad Joshi, Quek Shio Gai, R. Radha, A.A. Salama, S. Satham Hussain, Mehmet Șahin, Said Broumi, Ganeshsree Selvachandran, Selvaraj Ganesan, Shahbaz Ali, Shouzhen Zeng, Manjeet Singh, A. Stanis Arul Mary, Dragiša Stanujkić, Yusuf Șubaș, Rui-Pu Tan, Mirela Teodorescu, Selçuk Topal, Zenonas Turskis, Vakkas Uluçay, Norberto Valcárcel Izquierdo, V. Venkateswara Rao, Volkan Duran, Ying Li, Young Bae Jun, Wadei F. Al-Omeri, Jian-qiang Wang, Lihshing Leigh Wang, Edmundas Kazimieras Zavadskas.