An Introduction to Modeling and Simulation of Particulate Flows

An Introduction to Modeling and Simulation of Particulate Flows
Author: T. I. Zohdi
Publisher: SIAM
Total Pages: 194
Release: 2007-01-01
Genre: Science
ISBN: 9780898718928

The relatively recent increase in computational power available for mathematical modeling and simulation raises the possibility that modern numerical methods can play a significant role in the analysis of complex particulate flows. An Introduction to Modeling and Simulation of Particulate Flows focuses on basic models and physically based computational solution strategies for the direct and rapid simulation of flowing particulate media. Its emphasis is primarily on fluidized dry particulate flows in which there is no significant interstitial fluid, although fully coupled fluid-particle systems are discussed as well. An introduction to basic computational methods for ascertaining optical responses of particulate systems also is included. The successful analysis of a wide range of applications requires the simulation of flowing particulate media that simultaneously involves near-field interaction and contact between particles in a thermally sensitive environment. These systems naturally occur in astrophysics and geophysics; powder processing pharmaceutical industries; bio-, micro- and nanotechnologies; and applications arising from the study of spray processes involving aerosols, sputtering, and epitaxy. Audience: written for computational scientists, numerical analysts, and applied mathematicians, it will be of interest to civil and mechanical engineers and materials scientists. It is also suitable for first-year graduate students in the applied sciences, engineering, and applied mathematics who have an interest in the computational analysis of complex particulate flows.

Particulate Flows

Particulate Flows
Author: Donald A. Drew
Publisher: Springer Science & Business Media
Total Pages: 155
Release: 2012-12-06
Genre: Mathematics
ISBN: 1468471090

This IMA Volume in Mathematics and its Applications PARTICULATE FLOWS: PROCESSING AND RHEOLOGY is based on the proceedings of a very successful one-week workshop with the same title, which was an integral part of the 1995-1996 IMA program on "Mathematical Methods in Materials Science." We would like to thank Donald A. Drew, Daniel D. Joseph, and Stephen L. Passman for their excellent work as organizers of the meeting. We also take this opportunity to thank the National Science Foun dation (NSF), the Army Research Office (ARO) and the Office of Naval Research (ONR), whose financial support made the workshop possible. A vner Friedman Robert Gulliver v PREFACE The workshop on Particulate Flows: Processing and Rheology was held January 8-12, 1996 at the Institute for Mathematics and its Applications on the University of Minnesota Twin Cities campus as part of the 1995- 96 Program on Mathematical Methods in Materials Science. There were about forty participants, and some lively discussions, in spite of the fact that bad weather on the east coast kept some participants from attending, and caused scheduling changes throughout the workshop. Heterogeneous materials can behave strangely, even in simple flow sit uations. For example, a mixture of solid particles in a liquid can exhibit behavior that seems solid-like or fluid-like, and attempting to measure the "viscosity" of such a mixture leads to contradictions and "unrepeatable" experiments. Even so, such materials are commonly used in manufacturing and processing.

Particle-Laden Flow

Particle-Laden Flow
Author: Bernard Geurts
Publisher: Springer Science & Business Media
Total Pages: 409
Release: 2007-08-27
Genre: Science
ISBN: 1402062176

This book contains a selection of the papers that were presented at the EUROMECH colloquium on particle-laden flow held at the University of Twente in 2006. The multiscale nature of this challenging field motivated the calling of the colloquium and reflects the central importance that the dispersion of particles in a flow has in various geophysical and environmental problems. The spreading of aerosols and soot in the air, the growth and dispersion of plankton blooms in seas and oceans, or the transport of sediment in rivers, estuaries and coastal regions are striking examples.

Modeling and Simulation of Infectious Diseases

Modeling and Simulation of Infectious Diseases
Author: Tarek I. Zohdi
Publisher: Springer Nature
Total Pages: 123
Release: 2023-02-09
Genre: Technology & Engineering
ISBN: 3031180534

The COVID-19 pandemic that started in 2019-2020 has led to a gigantic increase in modeling and simulation of infectious diseases. There are numerous topics associated with this epoch-changing event, such as (a) disease propagation, (b) transmission, (c) decontamination, and (d) vaccines. This is an evolving field. The targeted objective of this book is to expose researchers to key topics in this area, in a very concise manner. The topics selected for discussion have evolved with the progression of the pandemic. Beyond the introductory chapter on basic mathematics, optimization, and machine learning, the book covers four themes in modeling and simulation infectious diseases, specifically: Part 1: Macroscale disease propagation, Part 2: Microscale disease transmission and ventilation system design, Part 3: Ultraviolet viral decontamination, and Part 4: Vaccine design and immune response. It is important to emphasize that the rapid speed at which the simulations operate makes the presented computational tools easily deployable as digital twins, i.e., digital replicas of complex systems that can be inexpensively and safely optimized in a virtual setting and then used in the physical world afterward, thus reducing the costs of experiments and also accelerating development of new technologies.

Multiphysics Modelling of Fluid-Particulate Systems

Multiphysics Modelling of Fluid-Particulate Systems
Author: Hassan Khawaja
Publisher: Academic Press
Total Pages: 384
Release: 2020-03-14
Genre: Technology & Engineering
ISBN: 0128183462

Multiphysics Modelling of Fluid-Particulate Systems provides an explanation of how to model fluid-particulate systems using Eulerian and Lagrangian methods. The computational cost and relative merits of the different methods are compared, with recommendations on where and how to apply them provided. The science underlying the fluid-particulate phenomena involves computational fluid dynamics (for liquids and gases), computational particle dynamics (solids), and mass and heat transfer. In order to simulate these systems, it is essential to model the interactions between phases and the fluids and particles themselves. This book details instructions for several numerical methods of dealing with this complex problem. This book is essential reading for researchers from all backgrounds interested in multiphase flows or fluid-solid modeling, as well as engineers working on related problems in chemical engineering, food science, process engineering, geophysics or metallurgical processing. - Provides detailed coverage of Resolved and Unresolved Computational Fluid Dynamics - Discrete Element Method (CFD-DEM), Smoothed Particle Hydrodynamics, and their various attributes - Gives an excellent summary of a range of simulation techniques and provides numerical examples - Starts with a broad introduction to fluid-particulate systems to help readers from a range of disciplines grasp fundamental principles

An Introduction to Compressed Sensing

An Introduction to Compressed Sensing
Author: M. Vidyasagar
Publisher: SIAM
Total Pages: 354
Release: 2019-12-03
Genre: Technology & Engineering
ISBN: 161197612X

Compressed sensing is a relatively recent area of research that refers to the recovery of high-dimensional but low-complexity objects from a limited number of measurements. The topic has applications to signal/image processing and computer algorithms, and it draws from a variety of mathematical techniques such as graph theory, probability theory, linear algebra, and optimization. The author presents significant concepts never before discussed as well as new advances in the theory, providing an in-depth initiation to the field of compressed sensing. An Introduction to Compressed Sensing contains substantial material on graph theory and the design of binary measurement matrices, which is missing in recent texts despite being poised to play a key role in the future of compressed sensing theory. It also covers several new developments in the field and is the only book to thoroughly study the problem of matrix recovery. The book supplies relevant results alongside their proofs in a compact and streamlined presentation that is easy to navigate. The core audience for this book is engineers, computer scientists, and statisticians who are interested in compressed sensing. Professionals working in image processing, speech processing, or seismic signal processing will also find the book of interest.

Multiphase reacting flows: modelling and simulation

Multiphase reacting flows: modelling and simulation
Author: Daniele L. Marchisio
Publisher: Springer Science & Business Media
Total Pages: 269
Release: 2007-10-16
Genre: Technology & Engineering
ISBN: 3211724648

This book describes the most widely applicable modeling approaches. Chapters are organized in six groups covering from fundamentals to relevant applications. The book covers particle-based methods and also discusses Eulerian-Eulerian and Eulerian-Lagrangian techniques based on finite-volume schemes. Moreover, the possibility of modeling the poly-dispersity of the secondary phases in Eulerian-Eulerian schemes by solving the population balance equation is discussed.

Gas-Particle and Granular Flow Systems

Gas-Particle and Granular Flow Systems
Author: Nan Gui
Publisher: Elsevier
Total Pages: 386
Release: 2019-10-23
Genre: Science
ISBN: 0128163984

Gas-Particle and Granular Flow Systems: Coupled Numerical Methods and Applications breaks down complexities, details numerical methods (including basic theory, modeling and techniques in programming), and provides researchers with an introduction and starting point to each of the disciplines involved. As the modeling of gas-particle and granular flow systems is an emerging interdisciplinary field of study involving mathematics, numerical methods, computational science, and mechanical, chemical and nuclear engineering, this book provides an ideal resource for new researchers who are often intimidated by the complexities of fluid-particle, particle-particle, and particle-wall interactions in many disciplines.

ESAIM.

ESAIM.
Author:
Publisher:
Total Pages: 560
Release: 2008
Genre: Mathematical models
ISBN:

Coupled CFD-DEM Modeling

Coupled CFD-DEM Modeling
Author: Hamid Reza Norouzi
Publisher: John Wiley & Sons
Total Pages: 436
Release: 2016-10-17
Genre: Technology & Engineering
ISBN: 1119005132

Discusses the CFD-DEM method of modeling which combines both the Discrete Element Method and Computational Fluid Dynamics to simulate fluid-particle interactions. Deals with both theoretical and practical concepts of CFD-DEM, its numerical implementation accompanied by a hands-on numerical code in FORTRAN Gives examples of industrial applications