Introduction to Applied Linear Algebra

Introduction to Applied Linear Algebra
Author: Stephen Boyd
Publisher: Cambridge University Press
Total Pages: 477
Release: 2018-06-07
Genre: Business & Economics
ISBN: 1316518965

A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.

Introduction to Matrices and Vectors

Introduction to Matrices and Vectors
Author: Jacob T. Schwartz
Publisher: Courier Corporation
Total Pages: 198
Release: 2012-05-23
Genre: Mathematics
ISBN: 0486143708

Realizing that matrices can be a confusing topic for the beginner, the author of this undergraduate text has made things as clear as possible by focusing on problem solving, rather than elaborate proofs. He begins with the basics, offering students a solid foundation for the later chapters on using special matrices to solve problems.The first three chapters present the basics of matrices, including addition, multiplication, and division, and give solid practice in the areas of matrix manipulation where the laws of algebra do not apply. In later chapters the author introduces vectors and shows how to use vectors and matrices to solve systems of linear equations. He also covers special matrices — including complex numbers, quaternion matrices, and matrices with complex entries — and transpose matrices; the trace of a matrix; the cross product of matrices; eigenvalues and eigenvectors; and infinite series of matrices. Exercises at the end of each section give students further practice in problem solving. Prerequisites include a background in algebra, and in the later chapters, a knowledge of solid geometry. The book was designed as an introductory text for college freshmen and sophomores, but selected chapters can also be used to supplement advanced high school classes. Professionals who need a better understanding or review of the subject will also benefit from this concise guide.

Introduction to Linear and Matrix Algebra

Introduction to Linear and Matrix Algebra
Author: Nathaniel Johnston
Publisher: Springer Nature
Total Pages: 482
Release: 2021-05-19
Genre: Mathematics
ISBN: 3030528111

This textbook emphasizes the interplay between algebra and geometry to motivate the study of linear algebra. Matrices and linear transformations are presented as two sides of the same coin, with their connection motivating inquiry throughout the book. By focusing on this interface, the author offers a conceptual appreciation of the mathematics that is at the heart of further theory and applications. Those continuing to a second course in linear algebra will appreciate the companion volume Advanced Linear and Matrix Algebra. Starting with an introduction to vectors, matrices, and linear transformations, the book focuses on building a geometric intuition of what these tools represent. Linear systems offer a powerful application of the ideas seen so far, and lead onto the introduction of subspaces, linear independence, bases, and rank. Investigation then focuses on the algebraic properties of matrices that illuminate the geometry of the linear transformations that they represent. Determinants, eigenvalues, and eigenvectors all benefit from this geometric viewpoint. Throughout, “Extra Topic” sections augment the core content with a wide range of ideas and applications, from linear programming, to power iteration and linear recurrence relations. Exercises of all levels accompany each section, including many designed to be tackled using computer software. Introduction to Linear and Matrix Algebra is ideal for an introductory proof-based linear algebra course. The engaging color presentation and frequent marginal notes showcase the author’s visual approach. Students are assumed to have completed one or two university-level mathematics courses, though calculus is not an explicit requirement. Instructors will appreciate the ample opportunities to choose topics that align with the needs of each classroom, and the online homework sets that are available through WeBWorK.

Coding the Matrix

Coding the Matrix
Author: Philip N. Klein
Publisher:
Total Pages: 530
Release: 2013-07
Genre: Algebras, Linear
ISBN: 9780615856735

An engaging introduction to vectors and matrices and the algorithms that operate on them, intended for the student who knows how to program. Mathematical concepts and computational problems are motivated by applications in computer science. The reader learns by "doing," writing programs to implement the mathematical concepts and using them to carry out tasks and explore the applications. Examples include: error-correcting codes, transformations in graphics, face detection, encryption and secret-sharing, integer factoring, removing perspective from an image, PageRank (Google's ranking algorithm), and cancer detection from cell features. A companion web site, codingthematrix.com provides data and support code. Most of the assignments can be auto-graded online. Over two hundred illustrations, including a selection of relevant "xkcd" comics. Chapters: "The Function," "The Field," "The Vector," "The Vector Space," "The Matrix," "The Basis," "Dimension," "Gaussian Elimination," "The Inner Product," "Special Bases," "The Singular Value Decomposition," "The Eigenvector," "The Linear Program" A new edition of this text, incorporating corrections and an expanded index, has been issued as of September 4, 2013, and will soon be available on Amazon.

An Introduction to Linear Programming and Game Theory

An Introduction to Linear Programming and Game Theory
Author: Paul R. Thie
Publisher: John Wiley & Sons
Total Pages: 476
Release: 2011-09-15
Genre: Mathematics
ISBN: 1118165454

Praise for the Second Edition: "This is quite a well-done book: very tightly organized, better-than-average exposition, and numerous examples, illustrations, and applications." —Mathematical Reviews of the American Mathematical Society An Introduction to Linear Programming and Game Theory, Third Edition presents a rigorous, yet accessible, introduction to the theoretical concepts and computational techniques of linear programming and game theory. Now with more extensive modeling exercises and detailed integer programming examples, this book uniquely illustrates how mathematics can be used in real-world applications in the social, life, and managerial sciences, providing readers with the opportunity to develop and apply their analytical abilities when solving realistic problems. This Third Edition addresses various new topics and improvements in the field of mathematical programming, and it also presents two software programs, LP Assistant and the Solver add-in for Microsoft Office Excel, for solving linear programming problems. LP Assistant, developed by coauthor Gerard Keough, allows readers to perform the basic steps of the algorithms provided in the book and is freely available via the book's related Web site. The use of the sensitivity analysis report and integer programming algorithm from the Solver add-in for Microsoft Office Excel is introduced so readers can solve the book's linear and integer programming problems. A detailed appendix contains instructions for the use of both applications. Additional features of the Third Edition include: A discussion of sensitivity analysis for the two-variable problem, along with new examples demonstrating integer programming, non-linear programming, and make vs. buy models Revised proofs and a discussion on the relevance and solution of the dual problem A section on developing an example in Data Envelopment Analysis An outline of the proof of John Nash's theorem on the existence of equilibrium strategy pairs for non-cooperative, non-zero-sum games Providing a complete mathematical development of all presented concepts and examples, Introduction to Linear Programming and Game Theory, Third Edition is an ideal text for linear programming and mathematical modeling courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for professionals who use game theory in business, economics, and management science.

Introduction to Linear Algebra and Differential Equations

Introduction to Linear Algebra and Differential Equations
Author: John W. Dettman
Publisher: Courier Corporation
Total Pages: 442
Release: 2012-10-05
Genre: Mathematics
ISBN: 0486158314

Excellent introductory text focuses on complex numbers, determinants, orthonormal bases, symmetric and hermitian matrices, first order non-linear equations, linear differential equations, Laplace transforms, Bessel functions, more. Includes 48 black-and-white illustrations. Exercises with solutions. Index.

Optimization Using Linear Programming

Optimization Using Linear Programming
Author: A. J. Metei
Publisher: Mercury Learning and Information
Total Pages: 435
Release: 2019-03-21
Genre: Mathematics
ISBN: 1683923464

Designed for engineers, mathematicians, computer scientists, financial analysts, and anyone interested in using numerical linear algebra, matrix theory, and game theory concepts to maximize efficiency in solving applied problems. The book emphasizes the solution of various types of linear programming problems by using different types of software, but includes the necessary definitions and theorems to master theoretical aspects of the topics presented. Features: Emphasizes the solution of various types of linear programming problems by using different kinds of software, e.g., MS-Excel, solutions of LPPs by Mathematica, MATLAB, WinQSB, and LINDO Provides definitions, theorems, and procedures for solving problems and all cases related to various linear programming topics Includes numerous application examples and exercises, e.g., transportation, assignment, and maximization Presents numerous topics that can be used to solve problems involving systems of linear equations, matrices, vectors, game theory, simplex method, and more.

Linear Algebra: Theory, Intuition, Code

Linear Algebra: Theory, Intuition, Code
Author: Mike X. Cohen
Publisher:
Total Pages: 584
Release: 2021-02
Genre: Mathematics
ISBN: 9789083136608

Linear algebra is perhaps the most important branch of mathematics for computational sciences, including machine learning, AI, data science, statistics, simulations, computer graphics, multivariate analyses, matrix decompositions, signal processing, and so on.The way linear algebra is presented in traditional textbooks is different from how professionals use linear algebra in computers to solve real-world applications in machine learning, data science, statistics, and signal processing. For example, the "determinant" of a matrix is important for linear algebra theory, but should you actually use the determinant in practical applications? The answer may surprise you!If you are interested in learning the mathematical concepts linear algebra and matrix analysis, but also want to apply those concepts to data analyses on computers (e.g., statistics or signal processing), then this book is for you. You'll see all the math concepts implemented in MATLAB and in Python.Unique aspects of this book: - Clear and comprehensible explanations of concepts and theories in linear algebra. - Several distinct explanations of the same ideas, which is a proven technique for learning. - Visualization using graphs, which strengthens the geometric intuition of linear algebra. - Implementations in MATLAB and Python. Com'on, in the real world, you never solve math problems by hand! You need to know how to implement math in software! - Beginner to intermediate topics, including vectors, matrix multiplications, least-squares projections, eigendecomposition, and singular-value decomposition. - Strong focus on modern applications-oriented aspects of linear algebra and matrix analysis. - Intuitive visual explanations of diagonalization, eigenvalues and eigenvectors, and singular value decomposition. - Codes (MATLAB and Python) are provided to help you understand and apply linear algebra concepts on computers. - A combination of hand-solved exercises and more advanced code challenges. Math is not a spectator sport!