An Integrated Mems Syringe For Advanced Drug Delivery
Download An Integrated Mems Syringe For Advanced Drug Delivery full books in PDF, epub, and Kindle. Read online free An Integrated Mems Syringe For Advanced Drug Delivery ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
MEMS-based Transdermal Drug Delivery
Author | : Richa Mishra |
Publisher | : CRC Press |
Total Pages | : 267 |
Release | : 2023-12-11 |
Genre | : Technology & Engineering |
ISBN | : 1003823394 |
This book introduces transdermal drug delivery and the developments that have taken place in various transdermal drug delivery techniques including the system-level design approach of a novel miniaturized medical device to offer precise and painless drug delivery via a skin-based transdermal route. It discusses the microelectromechanical systems (MEMS)-based fabrication technique and the design, fabrication and characterization of different MEMS-based components like microneedles and micropumps. It further includes a MEMS-based component micropump with design, analysis, fabrication and characterization of the transdermal drug delivery device and challenges encountered in the design improvements. Features: Summarizes transdermal drug delivery systems especially with a focus on MEMS and microneedles, including theoretical concepts Emphasizes system integration by describing simulation and design techniques as well as experimental fabrication Discusses system-level integration for miniaturized therapeutic devices Includes working simulation models covering microneedles and micropump analysis Explores future direction in development of pertinent devices The book is aimed at researchers, professionals, and graduate students in biomedical engineering, microelectronics, micro-electro-mechanical-systems, and drug delivery.
Handbook of Reliability, Availability, Maintainability and Safety in Engineering Design
Author | : Rudolph Frederick Stapelberg |
Publisher | : Springer Science & Business Media |
Total Pages | : 842 |
Release | : 2009-02-17 |
Genre | : Technology & Engineering |
ISBN | : 1848001754 |
This handbook studies the combination of various methods of designing for reliability, availability, maintainability and safety, as well as the latest techniques in probability and possibility modeling, mathematical algorithmic modeling, evolutionary algorithmic modeling, symbolic logic modeling, artificial intelligence modeling and object-oriented computer modeling.
Lab-on-a-chip Devices for Advanced Biomedicines
Author | : Arpana Parihar |
Publisher | : Royal Society of Chemistry |
Total Pages | : 694 |
Release | : 2024-08-14 |
Genre | : Technology & Engineering |
ISBN | : 1837673489 |
The global miniature devices market is poised to surpass a valuation of $12–$15 billion USD by the year 2030. Lab-on-a-chip (LOC) devices are a vital component of this market. Comprising a network of microchannels, electrical circuits, sensors, and electrodes, LOC is a miniaturized integrated device platform used to streamline day-to-day laboratory functions, run cost-effective clinical analyses and curb the need for centralized instrumentation facilities in remote areas. Compact design, portability, ease of operation, low sample volume, short reaction time, and parallel investigation stand as the pivotal factors driving the widespread acceptance of LOC within the biomedical community. In this book, the Editors meticulously explore LOC through three key ‘Ts’: Theories (microfluidics, microarrays, instrumentation, software); Technologies (additive manufacturing, artificial intelligence, computational thinking, smart consumables, scale-up tactics, and biofouling); and Trends (biomedical analysis, point-of-care diagnostics, personalized healthcare, bioactive synthesis, disease diagnosis, and space applications) This comprehensive text not only provides readers with a thorough understanding of the current advancements in the LOC domain but also offers valuable insights to support the utilization of miniaturized devices for enhanced healthcare practices. Aimed at career researchers looking for instruction in the topic and newcomers to the area, the book is also useful for undergraduate and postgraduate students embarking on new studies or for those interested in reading about the LOC platform.
Nano-Bio- Electronic, Photonic and MEMS Packaging
Author | : C.P. Wong |
Publisher | : Springer Science & Business Media |
Total Pages | : 761 |
Release | : 2009-12-23 |
Genre | : Technology & Engineering |
ISBN | : 1441900403 |
Nanotechnologies are being applied to the biotechnology area, especially in the area of nano material synthesis. Until recently, there has been little research into how to implement nano/bio materials into the device level. “Nano and Bio Electronics Packaging” discusses how nanofabrication techniques can be used to customize packaging for nano devices with applications to biological and biomedical research and products. Covering such topics as nano bio sensing electronics, bio device packaging, NEMs for Bio Devices and much more.
Mems for Biomedical Applications
Author | : Shekhar Bhansali |
Publisher | : Elsevier |
Total Pages | : 511 |
Release | : 2012-07-18 |
Genre | : Technology & Engineering |
ISBN | : 0857096273 |
The application of Micro Electro Mechanical Systems (MEMS) in the biomedical field is leading to a new generation of medical devices. MEMS for biomedical applications reviews the wealth of recent research on fabrication technologies and applications of this exciting technology.The book is divided into four parts: Part one introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms. Part two describes applications of MEMS for biomedical sensing and diagnostic applications. MEMS for in vivo sensing and electrical impedance spectroscopy are investigated, along with ultrasonic transducers, and lab-on-chip devices. MEMS for tissue engineering and clinical applications are the focus of part three, which considers cell culture and tissue scaffolding devices, BioMEMS for drug delivery and minimally invasive medical procedures. Finally, part four reviews emerging biomedical applications of MEMS, from implantable neuroprobes and ocular implants to cellular microinjection and hybrid MEMS.With its distinguished editors and international team of expert contributors, MEMS for biomedical applications provides an authoritative review for scientists and manufacturers involved in the design and development of medical devices as well as clinicians using this important technology. - Reviews the wealth of recent research on fabrication technologies and applications of Micro Electro Mechanical Systems (MEMS) in the biomedical field - Introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms - Considers MEMS for biomedical sensing and diagnostic applications, along with MEMS for in vivo sensing and electrical impedance spectroscopy
Highly Integrated Microfluidics Design
Author | : Dan E. Angelescu |
Publisher | : Artech House |
Total Pages | : 269 |
Release | : 2011 |
Genre | : Technology & Engineering |
ISBN | : 159693980X |
The recent development of microfluidics has lead to the concept of lab-on-a-chip, where several functional blocks are combined into a single device that can perform complex manipulations and characterizations on the microscopic fluid sample. However, integration of multiple functionalities on a single device can be complicated. This a cutting-edge resource focuses on the crucial aspects of integration in microfluidic systems. It serves as a one-stop guide to designing microfluidic systems that are highly integrated and scalable. This practical book covers a wide range of critical topics, from fabrication techniques and simulation tools, to actuation and sensing functional blocks and their inter-compatibility. This unique reference outlines the benefits and drawbacks of different approaches to microfluidic integration and provides a number of clear examples of highly integrated microfluidic systems.