Green’s Functions in the Theory of Ordinary Differential Equations

Green’s Functions in the Theory of Ordinary Differential Equations
Author: Alberto Cabada
Publisher: Springer Science & Business Media
Total Pages: 180
Release: 2013-11-29
Genre: Mathematics
ISBN: 1461495067

This book provides a complete and exhaustive study of the Green’s functions. Professor Cabada first proves the basic properties of Green's functions and discusses the study of nonlinear boundary value problems. Classic methods of lower and upper solutions are explored, with a particular focus on monotone iterative techniques that flow from them. In addition, Cabada proves the existence of positive solutions by constructing operators defined in cones. The book will be of interest to graduate students and researchers interested in the theoretical underpinnings of boundary value problem solutions.

Green's Function Integral Equation Methods in Nano-Optics

Green's Function Integral Equation Methods in Nano-Optics
Author: Thomas M. Søndergaard
Publisher: CRC Press
Total Pages: 418
Release: 2019-01-30
Genre: Technology & Engineering
ISBN: 1351260197

This book gives a comprehensive introduction to Green’s function integral equation methods (GFIEMs) for scattering problems in the field of nano-optics. First, a brief review is given of the most important theoretical foundations from electromagnetics, optics, and scattering theory, including theory of waveguides, Fresnel reflection, and scattering, extinction, and absorption cross sections. This is followed by a presentation of different types of GFIEMs of increasing complexity for one-, two-, and three-dimensional scattering problems. In GFIEMs, the electromagnetic field at any position is directly related to the field at either the inside or the surface of a scattering object placed in a reference structure. The properties of the reference structure, and radiating or periodic boundary conditions, are automatically taken care of via the choice of Green’s function. This book discusses in detail how to solve the integral equations using either simple or higher-order finite-element-based methods; how to calculate the relevant Green’s function for different reference structures and choices of boundary conditions; and how to calculate near-fields, optical cross sections, and the power emitted by a local source. Solution strategies for large structures are discussed based on either transfer-matrix-approaches or the conjugate gradient algorithm combined with the Fast Fourier Transform. Special attention is given to reducing the computational problem for three-dimensional structures with cylindrical symmetry by using cylindrical harmonic expansions. Each presented method is accompanied by examples from nano-optics, including: resonant metal nano-particles placed in a homogeneous medium or on a surface or waveguide; a microstructured gradient-index-lens; the Purcell effect for an emitter in a photonic crystal; the excitation of surface plasmon polaritons by second-harmonic generation in a polymer fiber placed on a thin metal film; and anti-reflective, broadband absorbing or resonant surface microstructures. Each presented method is also accompanied by guidelines for software implementation and exercises. Features Comprehensive introduction to Green’s function integral equation methods for scattering problems in the field of nano-optics Detailed explanation of how to discretize and solve integral equations using simple and higher-order finite-element approaches Solution strategies for large structures Guidelines for software implementation and exercises Broad selection of examples of scattering problems in nano-optics

Geophysical Interpretation using Integral Equations

Geophysical Interpretation using Integral Equations
Author: L. Eskola
Publisher: Springer Science & Business Media
Total Pages: 203
Release: 2012-12-06
Genre: Mathematics
ISBN: 9401123705

Along with the general development of numerical methods in pure and applied to apply integral equations to geophysical modelling has sciences, the ability improved considerably within the last thirty years or so. This is due to the successful derivation of integral equations that are applicable to the modelling of complex structures, and efficient numerical algorithms for their solution. A significant stimulus for this development has been the advent of fast digital computers. The purpose of this book is to give an idea of the principles by which boundary-value problems describing geophysical models can be converted into integral equations. The end results are the integral formulas and integral equations that form the theoretical framework for practical applications. The details of mathematical analysis have been kept to a minimum. Numerical algorithms are discussed only in connection with some illustrative examples involving well-documented numerical modelling results. The reader is assu med to have a background in the fundamental field theories that form the basis for various geophysical methods, such as potential theory, electromagnetic theory, and elastic strain theory. A fairly extensive knowledge of mathematics, especially in vector and tensor calculus, is also assumed.

Static Green's Functions in Anisotropic Media

Static Green's Functions in Anisotropic Media
Author: Ernian Pan
Publisher: Cambridge University Press
Total Pages: 357
Release: 2015-04-30
Genre: Technology & Engineering
ISBN: 131623987X

This book presents basic theory on static Green's functions in general anisotropic magnetoelectroelastic media including detailed derivations based on the complex variable method, potential method, and integral transforms. Green's functions corresponding to the reduced cases are also presented including those in anisotropic and transversely isotropic piezoelectric and piezomagnetic media, and in purely anisotropic elastic, transversely isotropic elastic and isotropic elastic media. Problems include those in three-dimensional, (two-dimensional) infinite, half, and biomaterial spaces (planes). While the emphasis is on the Green's functions related to the line and point force, those corresponding to the important line and point dislocation are also provided and discussed. This book provides a comprehensive derivation and collection of the Green's functions in the concerned media, and as such, it is an ideal reference book for researchers and engineers, and a textbook for both students in engineering and applied mathematics.

Elements of Green's Functions and Propagation

Elements of Green's Functions and Propagation
Author: Gabriel Barton
Publisher: Oxford University Press
Total Pages: 484
Release: 1989
Genre: Mathematics
ISBN: 9780198519980

This text takes the student with a background in undergraduate physics and mathematics towards the skills and insights needed for graduate work in theoretical physics. The author uses Green's functions to explore the physics of potentials, diffusion, and waves. These are important phenomena in their own right, but this study of the partial differential equations describing them also prepares the student for more advanced applications in many-body physics and field theory. Calculations are carried through in enough detail for self-study, and case histories illustrate the interplay between physical insight and mathematical formalism. The aim is to develop the habit of dialogue with the equations and the craftsmanship this fosters in tackling the problem. The book is based on the author's extensive teaching experience.

Dyadic Green Functions in Electromagnetic Theory

Dyadic Green Functions in Electromagnetic Theory
Author: Chen-to Tai
Publisher: Institute of Electrical & Electronics Engineers(IEEE)
Total Pages: 368
Release: 1994
Genre: Mathematics
ISBN:

In this comprehensive, new edition, Chen-To Tai gives extensive attention to recent research surrounding the techniques of dyadic Green functions. Additional formulations are introduced, including the classifications and the different methods of finding the eigenfunction expansions. Important new features in this edition include Maxwell's equations, which has been cast in a dyadic form to make the introduction of the electric and magnetic dyadic Green functions easier to understand; the integral solutions to Maxwell's equations, now derived with the aid of the vector-dyadic Green's theorem, allowing several intermediate steps to be omitted; a detailed discussion of complementary reciprocal theorems and transient radiation in moving media; and the derivation of various dyadic Green functions for problems involving plain layered media, and a two-dimensional Fourier-integral representation of these functions. This in-depth textbook will be of particular interest to antenna and microwave engineers, research scientists, and professors.

Introduction to Integral Equations with Applications

Introduction to Integral Equations with Applications
Author: Abdul J. Jerri
Publisher: John Wiley & Sons
Total Pages: 458
Release: 1999-09-03
Genre: Mathematics
ISBN: 9780471317340

From the reviews of the First Edition: "Extremely clear, self-contained text . . . offers to a wide class of readers the theoretical foundations and the modern numerical methods of the theory of linear integral equations."-Revue Roumaine de Mathematiques Pures et Appliquées. Abdul Jerri has revised his highly applied book to make it even more useful for scientists and engineers, as well as mathematicians. Covering the fundamental ideas and techniques at a level accessible to anyone with a solid undergraduate background in calculus and differential equations, Dr. Jerri clearly demonstrates how to use integral equations to solve real-world engineering and physics problems. This edition provides precise guidelines to the basic methods of solutions, details more varied numerical methods, and substantially boosts the total of practical examples and exercises. Plus, it features added emphasis on the basic theorems for the existence and uniqueness of solutions of integral equations and points out the interrelation between differentiation and integration. Other features include: * A new section on integral equations in higher dimensions. * An improved presentation of the Laplace and Fourier transforms. * A new detailed section for Fredholm integral equations of the first kind. * A new chapter covering the basic higher quadrature numerical integration rules. * A concise introduction to linear and nonlinear integral equations. * Clear examples of singular integral equations and their solutions. * A student's solutions manual available directly from the author.

Linear Integral Equations

Linear Integral Equations
Author: Ram P. Kanwal
Publisher: Springer Science & Business Media
Total Pages: 327
Release: 2013-11-27
Genre: Mathematics
ISBN: 1461207657

This second edition of Linear Integral Equations continues the emphasis that the first edition placed on applications. Indeed, many more examples have been added throughout the text. Significant new material has been added in Chapters 6 and 8. For instance, in Chapter 8 we have included the solutions of the Cauchy type integral equations on the real line. Also, there is a section on integral equations with a logarithmic kernel. The bibliography at the end of the book has been exteded and brought up to date. I wish to thank Professor B.K. Sachdeva who has checked the revised man uscript and has suggested many improvements. Last but not least, I am grateful to the editor and staff of Birkhauser for inviting me to prepare this new edition and for their support in preparing it for publication. RamP Kanwal CHAYfERl Introduction 1.1. Definition An integral equation is an equation in which an unknown function appears under one or more integral signs Naturally, in such an equation there can occur other terms as well. For example, for a ~ s ~ b; a :( t :( b, the equations (1.1.1) f(s) = ib K(s, t)g(t)dt, g(s) = f(s) + ib K(s, t)g(t)dt, (1.1.2) g(s) = ib K(s, t)[g(t)fdt, (1.1.3) where the function g(s) is the unknown function and all the other functions are known, are integral equations. These functions may be complex-valued functions of the real variables s and t.

Handbook of Integral Equations

Handbook of Integral Equations
Author: Andrei D. Polyanin
Publisher: CRC Press
Total Pages: 1143
Release: 2008-02-12
Genre: Mathematics
ISBN: 0203881052

Unparalleled in scope compared to the literature currently available, the Handbook of Integral Equations, Second Edition contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equa

Boundary Integral and Singularity Methods for Linearized Viscous Flow

Boundary Integral and Singularity Methods for Linearized Viscous Flow
Author: C. Pozrikidis
Publisher: Cambridge University Press
Total Pages: 276
Release: 1992-02-28
Genre: Mathematics
ISBN: 9780521406932

In addition to theory, this study focuses on practical application and computer implementation in a coherent introduction to boundary integrals, boundary element and singularity methods for steady and unsteady flow at zero Reynolds numbers.