OAR

OAR
Author:
Publisher:
Total Pages: 570
Release: 1967
Genre:
ISBN:

Hypersonic and High Temperature Gas Dynamics

Hypersonic and High Temperature Gas Dynamics
Author: John David Anderson
Publisher: AIAA
Total Pages: 710
Release: 1989
Genre: Science
ISBN: 9781563474590

This book is a self-contained text for those students and readers interested in learning hypersonic flow and high-temperature gas dynamics. It assumes no prior familiarity with either subject on the part of the reader. If you have never studied hypersonic and/or high-temperature gas dynamics before, and if you have never worked extensively in the area, then this book is for you. On the other hand, if you have worked and/or are working in these areas, and you want a cohesive presentation of the fundamentals, a development of important theory and techniques, a discussion of the salient results with emphasis on the physical aspects, and a presentation of modern thinking in these areas, then this book is also for you. In other words, this book is designed for two roles: 1) as an effective classroom text that can be used with ease by the instructor, and understood with ease by the student; and 2) as a viable, professional working tool for engineers, scientists, and managers who have any contact in their jobs with hypersonic and/or high-temperature flow.

Hypersonic Flow Theory

Hypersonic Flow Theory
Author: Wallace Hayes
Publisher: Elsevier
Total Pages: 481
Release: 2012-12-02
Genre: Technology & Engineering
ISBN: 032314876X

Hypersonic Flow Theory presents the fundamentals of fluid mechanics, focusing on the hypersonic flow theory and approaches in theoretical aerodynamics. This book discusses the assumptions underlying hypersonic flow theory, unified supersonic-hypersonic similitude, two-dimensional and axisymmetric bodies, and circular cylinder. The constant-streamtube-area approximation, streamtube-continuity methods, and tangent-wedge and tangent-cone are also deliberated. This text likewise covers the similar laminar boundary layer solutions, bluntness induced interactions on slender bodies, and free molecule transfer theory. The dynamics of hypersonic flight or hypersonic wing theory, magnetohydrodynamic theory, or any developments involving treatment of the Boltzmann equation are not included. This publication is intended for hypersonic aerodynamicists, students, and researchers conducting work on the hypersonic flow phenomena.