Amorphous and Nanostructured Carbon: Volume 593

Amorphous and Nanostructured Carbon: Volume 593
Author: J. P. Sullivan
Publisher:
Total Pages: 600
Release: 2000-07-05
Genre: Science
ISBN:

There has been tremendous development in the science of carbon in past years. First came the development of the chemical vapor deposition of diamond, followed by the discovery of a new class of molecules - the fullerenes. Carbon nanotubes were discovered and techniques were developed to deposit new phases of amorphous carbon containing mainly sp3 bonding. This book brings together scientists and engineers from all areas of carbon research, both sp2 and sp3 bonded, from the fully amorphous to nanostructured carbon, to the highly ordered nanotubes. It covers a range of subjects including the synthesis and properties of nanotubes, as well as diamond-like carbon deposition and properties. Applications range from nanotubes for hydrogen storage, to electrochemical double-layer capacitors (supercapacitors), field emission displays, hard coatings, and carbon coatings for magnetic storage technology. The book deals with the growth, characterization, properties and applications of nanotubes and field emission from all varieties of carbon, amorphous and diamond-like carbon- growth, properties and applications. It also contains papers on diamond, silicon carbide, carbon nitride and beryllium films.

Amorphous and Nanostructured Carbon:

Amorphous and Nanostructured Carbon:
Author: J. P. Sullivan
Publisher: Cambridge University Press
Total Pages: 590
Release: 2014-06-05
Genre: Technology & Engineering
ISBN: 9781107413313

There has been tremendous development in the science of carbon in past years. First came the development of the chemical vapor deposition of diamond, followed by the discovery of a new class of molecules - the fullerenes. Carbon nanotubes were discovered and techniques were developed to deposit new phases of amorphous carbon containing mainly sp3 bonding. This book brings together scientists and engineers from all areas of carbon research, both sp2 and sp3 bonded, from the fully amorphous to nanostructured carbon, to the highly ordered nanotubes. It covers a range of subjects including the synthesis and properties of nanotubes, as well as diamond-like carbon deposition and properties. Applications range from nanotubes for hydrogen storage, to electrochemical double-layer capacitors (supercapacitors), field emission displays, hard coatings, and carbon coatings for magnetic storage technology. The book deals with the growth, characterization, properties and applications of nanotubes and field emission from all varieties of carbon, amorphous and diamond-like carbon- growth, properties and applications. It also contains papers on diamond, silicon carbide, carbon nitride and beryllium films.

High Power Microwave Tubes

High Power Microwave Tubes
Author: Vishal Kesari
Publisher: Morgan & Claypool Publishers
Total Pages: 111
Release: 2018-02-20
Genre: Science
ISBN: 1681747049

Volume 2 of the book begins with chapter 6, in which we have taken up conventional MWTs (such as TWTs, klystrons, including multi-cavity and multi-beam klystrons, klystron variants including reflex klystron, IOT, EIK, EIO and twystron, and crossed-field tubes, namely, magnetron, CFA and carcinotron). In chapter 7, we have taken up fast-wave tubes (such as gyrotron, gyro-BWO, gyro-klystron, gyro-TWT, CARM, SWCA, hybrid gyro-tubes and peniotron). In chapter 8, we discuss vacuum microelectronic tubes (such as klystrino module, THz gyrotron and clinotron BWO); plasma-assisted tubes (such as PWT, plasma-filled TWT, BWO, including PASOTRON, and gyrotron); and HPM (high power microwave) tubes (such as relativistic TWT, relativistic BWO, RELTRON (variant of relativistic klystron), relativistic magnetron, high power Cerenkov tubes including SWO, RDG or orotron, MWCG and MWDG, bremsstrahlung radiation type tube, namely, vircator, and M-type tube MILO). In Chapter 9, we provide handy information about the frequency and power ranges of common MWTs, although more such information is provided at relevant places in the rest of the book as and where necessary. Chapter 10 is an epilogue that sums up the authors' attempt to bring out the various aspects of the basics of and trends in high power MWTs.

Ultrananocrystalline Diamond

Ultrananocrystalline Diamond
Author: Olga A. Shenderova
Publisher: William Andrew
Total Pages: 581
Release: 2012-12-31
Genre: Science
ISBN: 1437734669

Ultrananocrystalline Diamond: Synthesis, Properties, and Applications is a unique practical reference handbook. Written by the leading experts worldwide it introduces the science of UNCD for both the R&D community and applications developers using UNCD in a diverse range of applications from macro to nanodevices, such as energy-saving ultra-low friction and wear coatings for mechanical pump seals and tools, high-performance MEMS/NEMS-based systems (e.g. in telecommunications), the next generation of high-definition flat panel displays, in-vivo biomedical implants, and biosensors. This work brings together the basic science of nanoscale diamond structures, with detailed information on ultra-nanodiamond synthesis, properties, and applications. The book offers discussion on UNCD in its two forms, as a powder and as a chemical vapor deposited film. Also discussed are the superior mechanical, tribological, transport, electrochemical, and electron emission properties of UNCD for a wide range of applications including MEMS/ NEMS, surface acoustic wave (SAW) devices, electrochemical sensors, coatings for field emission arrays, photonic and RF switching, biosensors, and neural prostheses, etc. - Ultrananocrystalline Diamond summarises the most recent developments in the nanodiamond field, and presents them in a way that will be useful to the R&D community in both academic and corporate sectors - Coverage of both nanodiamond particles and films make this a valuable resource for both the nanotechnology community and the field of thin films / vacuum deposition - Written by the world's leading experts in nanodiamond, this second edition builds on its predecessor's reputation as the most up-to-date resource in the field

Ultrathin Carbon-Based Overcoats for Extremely High Density Magnetic Recording

Ultrathin Carbon-Based Overcoats for Extremely High Density Magnetic Recording
Author: Reuben Jueyuan Yeo
Publisher: Springer
Total Pages: 184
Release: 2017-06-20
Genre: Technology & Engineering
ISBN: 9811048827

This book presents the latest research in ultrathin carbon-based protective overcoats for high areal density magnetic data storage systems, with a particular focus on hard disk drives (HDDs) and tape drives. These findings shed new light on how the microstructure and interfacial chemistry of these sub-20 nm overcoats can be engineered at the nanoscale regime to obtain enhanced properties for wear, thermal and corrosion protection – which are critical for such applications. Readers will also be provided with fresh experimental insights into the suitability of graphene as an atomically-thin overcoat for HDD media. The easy readability of this book will appeal to a wide audience, ranging from non-specialists with a general interest in the field to scientists and industry professionals directly involved in thin film and coatings research.

Thin Films

Thin Films
Author:
Publisher:
Total Pages: 576
Release: 2000
Genre: Thin films
ISBN:

Nucleation and Growth Processes in Materials

Nucleation and Growth Processes in Materials
Author: Antonios Gonis
Publisher:
Total Pages: 474
Release: 2000
Genre: Science
ISBN:

One of the goals of materials science is to design alloys with pre-specified desirable technological properties. To achieve this goal, it is necessary to have a thorough understanding of the fundamental mechanisms underlying materials behavior. In particular, one must understand the effects on alloy properties caused by intentional changes in concentration and how the combinations of temperature, time and uncontrollable foreign impurities affect microstructure. In addition to the equilibrium phase information contained in phase diagrams, nonequilibrium dynamic processes and metastable phases are known to be crucial in determining materials properties. This volume brings together researchers working on various aspects of nonequilibrium processes in materials to discuss current research issues and to provide guidelines for future work. Particular attention was paid to understanding particle nucleation and growth, both experimentally and theoretically, solid-state reactions, nanosystems, liquid-solid transformations, and solidification and amorphization. On the theoretical side, fundamental principles governing nucleation and growth, and related phenomena such as coarsening and Ostwald ripening, are discussed. Progress is also reported on the phase field method and on Monte Carlo simulations.