Algorithms for Elliptic Problems

Algorithms for Elliptic Problems
Author: Marián Vajtersic
Publisher: Springer Science & Business Media
Total Pages: 310
Release: 2013-03-09
Genre: Computers
ISBN: 9401707014

This volume deals with problems of modern effective algorithms for the numerical solution of the most frequently occurring elliptic partial differential equations. From the point of view of implementation, attention is paid to algorithms for both classical sequential and parallel computer systems. The first two chapters are devoted to fast algorithms for solving the Poisson and biharmonic equation. In the third chapter, parallel algorithms for model parallel computer systems of the SIMD and MIMD types are described. The implementation aspects of parallel algorithms for solving model elliptic boundary value problems are outlined for systems with matrix, pipeline and multiprocessor parallel computer architectures. A modern and popular multigrid computational principle which offers a good opportunity for a parallel realization is described in the next chapter. More parallel variants based in this idea are presented, whereby methods and assignments strategies for hypercube systems are treated in more detail. The last chapter presents VLSI designs for solving special tridiagonal linear systems of equations arising from finite-difference approximations of elliptic problems. For researchers interested in the development and application of fast algorithms for solving elliptic partial differential equations using advanced computer systems.

The Finite Element Method for Elliptic Problems

The Finite Element Method for Elliptic Problems
Author: P.G. Ciarlet
Publisher: Elsevier
Total Pages: 551
Release: 1978-01-01
Genre: Mathematics
ISBN: 0080875254

The objective of this book is to analyze within reasonable limits (it is not a treatise) the basic mathematical aspects of the finite element method. The book should also serve as an introduction to current research on this subject. On the one hand, it is also intended to be a working textbook for advanced courses in Numerical Analysis, as typically taught in graduate courses in American and French universities. For example, it is the author's experience that a one-semester course (on a three-hour per week basis) can be taught from Chapters 1, 2 and 3 (with the exception of Section 3.3), while another one-semester course can be taught from Chapters 4 and 6. On the other hand, it is hoped that this book will prove to be useful for researchers interested in advanced aspects of the numerical analysis of the finite element method. In this respect, Section 3.3, Chapters 5, 7 and 8, and the sections on "Additional Bibliography and Comments should provide many suggestions for conducting seminars.

Algorithms for Elliptic Problems

Algorithms for Elliptic Problems
Author: Marián Vajtersic
Publisher: Springer Science & Business Media
Total Pages: 324
Release: 1993-04-30
Genre: Computers
ISBN: 9780792319184

This volume deals with problems of modern effective algorithms for the numerical solution of the most frequently occurring elliptic partial differential equations. From the point of view of implementation, attention is paid to algorithms for both classical sequential and parallel computer systems. The first two chapters are devoted to fast algorithms for solving the Poisson and biharmonic equation. In the third chapter, parallel algorithms for model parallel computer systems of the SIMD and MIMD types are described. The implementation aspects of parallel algorithms for solving model elliptic boundary value problems are outlined for systems with matrix, pipeline and multiprocessor parallel computer architectures. A modern and popular multigrid computational principle which offers a good opportunity for a parallel realization is described in the next chapter. More parallel variants based in this idea are presented, whereby methods and assignments strategies for hypercube systems are treated in more detail. The last chapter presents VLSI designs for solving special tridiagonal linear systems of equations arising from finite-difference approximations of elliptic problems. For researchers interested in the development and application of fast algorithms for solving elliptic partial differential equations using advanced computer systems.

Variational Methods for the Numerical Solution of Nonlinear Elliptic Problem

Variational Methods for the Numerical Solution of Nonlinear Elliptic Problem
Author: Roland Glowinski
Publisher: SIAM
Total Pages: 473
Release: 2015-11-04
Genre: Mathematics
ISBN: 1611973783

Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems?addresses computational methods that have proven efficient for the solution of a large variety of nonlinear elliptic problems. These methods can be applied to many problems in science and engineering, but this book focuses on their application to problems in continuum mechanics and physics. This book differs from others on the topic by presenting examples of the power and versatility of operator-splitting methods; providing a detailed introduction to alternating direction methods of multipliers and their applicability to the solution of nonlinear (possibly nonsmooth) problems from science and engineering; and showing that nonlinear least-squares methods, combined with operator-splitting and conjugate gradient algorithms, provide efficient tools for the solution of highly nonlinear problems. The book provides useful insights suitable for advanced graduate students, faculty, and researchers in applied and computational mathematics as well as research engineers, mathematical physicists, and systems engineers.

Discontinuous Galerkin Methods

Discontinuous Galerkin Methods
Author: Bernardo Cockburn
Publisher: Springer Science & Business Media
Total Pages: 468
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642597211

A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.

Domain Decomposition

Domain Decomposition
Author: Barry Smith
Publisher: Cambridge University Press
Total Pages: 244
Release: 2004-03-25
Genre: Computers
ISBN: 9780521602860

Presents an easy-to-read discussion of domain decomposition algorithms, their implementation and analysis. Ideal for graduate students about to embark on a career in computational science. It will also be a valuable resource for all those interested in parallel computing and numerical computational methods.

Multi-Grid Methods and Applications

Multi-Grid Methods and Applications
Author: Wolfgang Hackbusch
Publisher: Springer Science & Business Media
Total Pages: 391
Release: 2013-03-09
Genre: Mathematics
ISBN: 3662024276

Multi-grid methods are the most efficient tools for solving elliptic boundary value problems. The reader finds here an elementary introduction to multi-grid algorithms as well as a comprehensive convergence analysis. One section describes special applications (convection-diffusion equations, singular perturbation problems, eigenvalue problems, etc.). The book also contains a complete presentation of the multi-grid method of the second kind, which has important applications to integral equations (e.g. the "panel method") and to numerous other problems. Readers with a practical interest in multi-grid methods will benefit from this book as well as readers with a more theoretical interest.