Algorithmic Learning Theory
Download Algorithmic Learning Theory full books in PDF, epub, and Kindle. Read online free Algorithmic Learning Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Shai Shalev-Shwartz |
Publisher | : Cambridge University Press |
Total Pages | : 415 |
Release | : 2014-05-19 |
Genre | : Computers |
ISBN | : 1107057132 |
Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.
Author | : Robert E. Schapire |
Publisher | : MIT Press |
Total Pages | : 544 |
Release | : 2014-01-10 |
Genre | : Computers |
ISBN | : 0262526034 |
An accessible introduction and essential reference for an approach to machine learning that creates highly accurate prediction rules by combining many weak and inaccurate ones. Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate “rules of thumb.” A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical. This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. The book begins with a general introduction to machine learning algorithms and their analysis; then explores the core theory of boosting, especially its ability to generalize; examines some of the myriad other theoretical viewpoints that help to explain and understand boosting; provides practical extensions of boosting for more complex learning problems; and finally presents a number of advanced theoretical topics. Numerous applications and practical illustrations are offered throughout.
Author | : Marcus Hutter |
Publisher | : Springer Science & Business Media |
Total Pages | : 415 |
Release | : 2007-09-17 |
Genre | : Computers |
ISBN | : 3540752242 |
This book constitutes the refereed proceedings of the 18th International Conference on Algorithmic Learning Theory, ALT 2007, held in Sendai, Japan, October 1-4, 2007, co-located with the 10th International Conference on Discovery Science, DS 2007. The 25 revised full papers presented together with the abstracts of five invited papers were carefully reviewed and selected from 50 submissions. They are dedicated to the theoretical foundations of machine learning.
Author | : Kamalika Chaudhuri |
Publisher | : Springer |
Total Pages | : 0 |
Release | : 2015-09-12 |
Genre | : Computers |
ISBN | : 9783319244853 |
This book constitutes the proceedings of the 26th International Conference on Algorithmic Learning Theory, ALT 2015, held in Banff, AB, Canada, in October 2015, and co-located with the 18th International Conference on Discovery Science, DS 2015. The 23 full papers presented in this volume were carefully reviewed and selected from 44 submissions. In addition the book contains 2 full papers summarizing the invited talks and 2 abstracts of invited talks. The papers are organized in topical sections named: inductive inference; learning from queries, teaching complexity; computational learning theory and algorithms; statistical learning theory and sample complexity; online learning, stochastic optimization; and Kolmogorov complexity, algorithmic information theory.
Author | : Vladimir Vovk |
Publisher | : Springer Science & Business Media |
Total Pages | : 344 |
Release | : 2005-03-22 |
Genre | : Computers |
ISBN | : 9780387001524 |
Algorithmic Learning in a Random World describes recent theoretical and experimental developments in building computable approximations to Kolmogorov's algorithmic notion of randomness. Based on these approximations, a new set of machine learning algorithms have been developed that can be used to make predictions and to estimate their confidence and credibility in high-dimensional spaces under the usual assumption that the data are independent and identically distributed (assumption of randomness). Another aim of this unique monograph is to outline some limits of predictions: The approach based on algorithmic theory of randomness allows for the proof of impossibility of prediction in certain situations. The book describes how several important machine learning problems, such as density estimation in high-dimensional spaces, cannot be solved if the only assumption is randomness.
Author | : José L. Balcázar |
Publisher | : Springer |
Total Pages | : 405 |
Release | : 2006-10-05 |
Genre | : Computers |
ISBN | : 3540466509 |
This book constitutes the refereed proceedings of the 17th International Conference on Algorithmic Learning Theory, ALT 2006, held in Barcelona, Spain in October 2006, colocated with the 9th International Conference on Discovery Science, DS 2006. The 24 revised full papers presented together with the abstracts of five invited papers were carefully reviewed and selected from 53 submissions. The papers are dedicated to the theoretical foundations of machine learning.
Author | : Daniel A. Roberts |
Publisher | : Cambridge University Press |
Total Pages | : 473 |
Release | : 2022-05-26 |
Genre | : Computers |
ISBN | : 1316519333 |
This volume develops an effective theory approach to understanding deep neural networks of practical relevance.
Author | : Pat Langley |
Publisher | : MIT Press |
Total Pages | : 374 |
Release | : 1987 |
Genre | : Computers |
ISBN | : 9780262620529 |
Scientific discovery is often regarded as romantic and creative--and hence unanalyzable--whereas the everyday process of verifying discoveries is sober and more suited to analysis. Yet this fascinating exploration of how scientific work proceeds argues that however sudden the moment of discovery may seem, the discovery process can be described and modeled. Using the methods and concepts of contemporary information-processing psychology (or cognitive science) the authors develop a series of artificial-intelligence programs that can simulate the human thought processes used to discover scientific laws. The programs--BACON, DALTON, GLAUBER, and STAHL--are all largely data-driven, that is, when presented with series of chemical or physical measurements they search for uniformities and linking elements, generating and checking hypotheses and creating new concepts as they go along. Scientific Discovery examines the nature of scientific research and reviews the arguments for and against a normative theory of discovery; describes the evolution of the BACON programs, which discover quantitative empirical laws and invent new concepts; presents programs that discover laws in qualitative and quantitative data; and ties the results together, suggesting how a combined and extended program might find research problems, invent new instruments, and invent appropriate problem representations. Numerous prominent historical examples of discoveries from physics and chemistry are used as tests for the programs and anchor the discussion concretely in the history of science.
Author | : Ankur Moitra |
Publisher | : Cambridge University Press |
Total Pages | : 161 |
Release | : 2018-09-27 |
Genre | : Computers |
ISBN | : 1107184584 |
Introduces cutting-edge research on machine learning theory and practice, providing an accessible, modern algorithmic toolkit.
Author | : Setsuo Arikawa |
Publisher | : Springer Science & Business Media |
Total Pages | : 600 |
Release | : 1994-09-28 |
Genre | : Computers |
ISBN | : 9783540585206 |
This volume presents the proceedings of the Fourth International Workshop on Analogical and Inductive Inference (AII '94) and the Fifth International Workshop on Algorithmic Learning Theory (ALT '94), held jointly at Reinhardsbrunn Castle, Germany in October 1994. (In future the AII and ALT workshops will be amalgamated and held under the single title of Algorithmic Learning Theory.) The book contains revised versions of 45 papers on all current aspects of computational learning theory; in particular, algorithmic learning, machine learning, analogical inference, inductive logic, case-based reasoning, and formal language learning are addressed.