Algebro Geometric Approach To Nonlinear Integrable Equations
Download Algebro Geometric Approach To Nonlinear Integrable Equations full books in PDF, epub, and Kindle. Read online free Algebro Geometric Approach To Nonlinear Integrable Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Fritz Gesztesy |
Publisher | : Cambridge University Press |
Total Pages | : 522 |
Release | : 2003-06-05 |
Genre | : Mathematics |
ISBN | : 9781139439411 |
The focus of this book is on algebro-geometric solutions of completely integrable nonlinear partial differential equations in (1+1)-dimensions, also known as soliton equations. Explicitly treated integrable models include the KdV, AKNS, sine-Gordon, and Camassa-Holm hierarchies as well as the classical massive Thirring system. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The formalism presented includes trace formulas, Dubrovin-type initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses techniques from the theory of differential equations, spectral analysis, and elements of algebraic geometry (most notably, the theory of compact Riemann surfaces). The presentation is rigorous, detailed, and self-contained, with ample background material provided in various appendices. Detailed notes for each chapter together with an exhaustive bibliography enhance the presentation offered in the main text.
Author | : Norbert Euler |
Publisher | : CRC Press |
Total Pages | : 367 |
Release | : 2021-09-07 |
Genre | : Mathematics |
ISBN | : 1000423301 |
The third volume in this sequence of books consists of a collection of contributions that aims to describe the recent progress in nonlinear differential equations and nonlinear dynamical systems (both continuous and discrete). Nonlinear Systems and Their Remarkable Mathematical Structures: Volume 3, Contributions from China just like the first two volumes, consists of contributions by world-leading experts in the subject of nonlinear systems, but in this instance only featuring contributions by leading Chinese scientists who also work in China (in some cases in collaboration with western scientists). Features Clearly illustrate the mathematical theories of nonlinear systems and its progress to both the non-expert and active researchers in this area Suitable for graduate students in Mathematics, Applied Mathematics and some of the Engineering sciences Written in a careful pedagogical manner by those experts who have been involved in the research themselves, and each contribution is reasonably self-contained
Author | : Gerald Teschl |
Publisher | : American Mathematical Soc. |
Total Pages | : 373 |
Release | : 2000 |
Genre | : Mathematics |
ISBN | : 0821819402 |
This volume serves as an introduction and reference source on spectral and inverse theory of Jacobi operators and applications of these theories to the Toda and Kac-van Moerbeke hierarchy.
Author | : Ron Donagi |
Publisher | : Cambridge University Press |
Total Pages | : 421 |
Release | : 2020-04-02 |
Genre | : Mathematics |
ISBN | : 110880358X |
Created as a celebration of mathematical pioneer Emma Previato, this comprehensive book highlights the connections between algebraic geometry and integrable systems, differential equations, mathematical physics, and many other areas. The authors, many of whom have been at the forefront of research into these topics for the last decades, have all been influenced by Previato's research, as her collaborators, students, or colleagues. The diverse articles in the book demonstrate the wide scope of Previato's work and the inclusion of several survey and introductory articles makes the text accessible to graduate students and non-experts, as well as researchers. This first volume covers a wide range of areas related to integrable systems, often emphasizing the deep connections with algebraic geometry. Common themes include theta functions and Abelian varieties, Lax equations, integrable hierarchies, Hamiltonian flows and difference operators. These powerful tools are applied to spinning top, Hitchin, Painleve and many other notable special equations.
Author | : Israel C. Gohberg |
Publisher | : Birkhäuser |
Total Pages | : 333 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3034887892 |
This and the next volume of the OT series contain the proceedings of the Work shop on Operator Theory and its Applications, IWOTA 95, which was held at the University of Regensburg, Germany, July 31 to August 4, 1995. It was the eigth workshop of this kind. Following is a list of the seven previous workshops with reference to their proceedings: 1981 Operator Theory (Santa Monica, California, USA) 1983 Applications of Linear Operator Theory to Systems and Networks (Rehovot, Israel), OT 12 1985 Operator Theory and its Applications (Amsterdam, The Netherlands), OT 19 1987 Operator Theory and Functional Analysis (Mesa, Arizona, USA), OT 35 1989 Matrix and Operator Theory (Rotterdam, The Netherlands), OT 50 1991 Operator Theory and Complex Analysis (Sapporo, Japan), OT 59 1993 Operator Theory and Boundary Eigenvalue Problems (Vienna, Austria), OT 80 IWOTA 95 offered a rich programme on a wide range of latest developments in operator theory and its applications. The programme consisted of 6 invited plenary lectures, 54 invited special topic lectures and more than 100 invited session talks. About 180 participants from 25 countries attended the workshop, more than a third came from Eastern Europe. The conference covered different aspects of linear and nonlinear spectral prob lems, starting with problems for abstract operators up to spectral theory of ordi nary and partial differential operators, pseudodifferential operators, and integral operators. The workshop was also focussed on operator theory in spaces with indefinite metric, operator functions, interpolation and extension problems.
Author | : Christian Klein |
Publisher | : Springer Science & Business Media |
Total Pages | : 274 |
Release | : 2005-11-18 |
Genre | : Science |
ISBN | : 9783540285892 |
Exact solutions to Einstein’s equations have been useful for the understanding of general relativity in many respects. They have led to such physical concepts as black holes and event horizons, and helped to visualize interesting features of the theory. This volume studies the solutions to the Ernst equation associated to Riemann surfaces in detail. In addition, the book discusses the physical and mathematical aspects of this class analytically as well as numerically.
Author | : Ron Donagi |
Publisher | : Cambridge University Press |
Total Pages | : 421 |
Release | : 2020-04-02 |
Genre | : Mathematics |
ISBN | : 1108715745 |
A collection of articles discussing integrable systems and algebraic geometry from leading researchers in the field.
Author | : Fritz Gesztesy |
Publisher | : Cambridge University Press |
Total Pages | : 438 |
Release | : 2008-09-04 |
Genre | : Mathematics |
ISBN | : 1139473778 |
As a partner to Volume 1: Dimensional Continuous Models, this monograph provides a self-contained introduction to algebro-geometric solutions of completely integrable, nonlinear, partial differential-difference equations, also known as soliton equations. The systems studied in this volume include the Toda lattice hierarchy, the Kac-van Moerbeke hierarchy, and the Ablowitz-Ladik hierarchy. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The theory presented includes trace formulas, algebro-geometric initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses basic techniques from the theory of difference equations and spectral analysis, some elements of algebraic geometry and especially, the theory of compact Riemann surfaces. The presentation is constructive and rigorous, with ample background material provided in various appendices. Detailed notes for each chapter, together with an exhaustive bibliography, enhance understanding of the main results.
Author | : Alexander I. Bobenko |
Publisher | : Springer Science & Business Media |
Total Pages | : 268 |
Release | : 2011-02-12 |
Genre | : Mathematics |
ISBN | : 3642174124 |
This volume offers a well-structured overview of existent computational approaches to Riemann surfaces and those currently in development. The authors of the contributions represent the groups providing publically available numerical codes in this field. Thus this volume illustrates which software tools are available and how they can be used in practice. In addition examples for solutions to partial differential equations and in surface theory are presented. The intended audience of this book is twofold. It can be used as a textbook for a graduate course in numerics of Riemann surfaces, in which case the standard undergraduate background, i.e., calculus and linear algebra, is required. In particular, no knowledge of the theory of Riemann surfaces is expected; the necessary background in this theory is contained in the Introduction chapter. At the same time, this book is also intended for specialists in geometry and mathematical physics applying the theory of Riemann surfaces in their research. It is the first book on numerics of Riemann surfaces that reflects the progress made in this field during the last decade, and it contains original results. There are a growing number of applications that involve the evaluation of concrete characteristics of models analytically described in terms of Riemann surfaces. Many problem settings and computations in this volume are motivated by such concrete applications in geometry and mathematical physics.
Author | : Reinhard Meinel |
Publisher | : Cambridge University Press |
Total Pages | : 219 |
Release | : 2008-06-26 |
Genre | : Science |
ISBN | : 1139472070 |
This book treats the classical problem of gravitational physics within Einstein's theory of general relativity. It presents basic principles and equations needed to describe rotating fluid bodies, as well as black holes in equilibrium. It then goes on to deal with a number of analytically tractable limiting cases, placing particular emphasis on the rigidly rotating disc of dust. The book concludes by considering the general case using powerful numerical methods that are applied to various models, including the classical example of equilibrium figures of constant density. Researchers in general relativity, mathematical physics, and astrophysics will find this a valuable reference book on the topic. A related website containing codes for calculating various figures of equilibrium is available at www.cambridge.org/9781107407350.