Algebras And Orders
Download Algebras And Orders full books in PDF, epub, and Kindle. Read online free Algebras And Orders ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Richard D. Schafer |
Publisher | : Courier Dover Publications |
Total Pages | : 177 |
Release | : 2017-11-15 |
Genre | : Mathematics |
ISBN | : 0486164179 |
Concise graduate-level introductory study presents some of the important ideas and results in the theory of nonassociative algebras. Places particular emphasis on alternative and (commutative) Jordan algebras. 1966 edition.
Author | : Jorge Martínez |
Publisher | : Springer Science & Business Media |
Total Pages | : 340 |
Release | : 2002-08-31 |
Genre | : Mathematics |
ISBN | : 9781402007521 |
This publication surveys some of the disciplines within ordered algebraic structures and also contains chapters highlighting a broad spectrum of research interests. In all, this book represents a reasonably accurate cross-section of the state of the art in ordered algebraic structures.
Author | : John Voight |
Publisher | : Springer Nature |
Total Pages | : 877 |
Release | : 2021-06-28 |
Genre | : Mathematics |
ISBN | : 3030566943 |
This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike. Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unit groups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces. Quaternion Algebras encompasses a vast wealth of knowledge at the intersection of many fields. Graduate students interested in algebra, geometry, and number theory will appreciate the many avenues and connections to be explored. Instructors will find numerous options for constructing introductory and advanced courses, while researchers will value the all-embracing treatment. Readers are assumed to have some familiarity with algebraic number theory and commutative algebra, as well as the fundamentals of linear algebra, topology, and complex analysis. More advanced topics call upon additional background, as noted, though essential concepts and motivation are recapped throughout.
Author | : David J. Winter |
Publisher | : Courier Corporation |
Total Pages | : 162 |
Release | : 2008-01-01 |
Genre | : Mathematics |
ISBN | : 048646282X |
Solid but concise, this account emphasizes Lie algebra's simplicity of theory, offering new approaches to major theorems and extensive treatment of Cartan and related Lie subalgebras over arbitrary fields. 1972 edition.
Author | : Ralph Douglas Doner |
Publisher | : |
Total Pages | : 14 |
Release | : 1927 |
Genre | : Algebra, Universal |
ISBN | : |
Author | : Ralph N. McKenzie |
Publisher | : American Mathematical Society |
Total Pages | : 386 |
Release | : 2018-07-09 |
Genre | : Mathematics |
ISBN | : 1470442957 |
This book presents the foundations of a general theory of algebras. Often called “universal algebra”, this theory provides a common framework for all algebraic systems, including groups, rings, modules, fields, and lattices. Each chapter is replete with useful illustrations and exercises that solidify the reader's understanding. The book begins by developing the main concepts and working tools of algebras and lattices, and continues with examples of classical algebraic systems like groups, semigroups, monoids, and categories. The essence of the book lies in Chapter 4, which provides not only basic concepts and results of general algebra, but also the perspectives and intuitions shared by practitioners of the field. The book finishes with a study of possible uniqueness of factorizations of an algebra into a direct product of directly indecomposable algebras. There is enough material in this text for a two semester course sequence, but a one semester course could also focus primarily on Chapter 4, with additional topics selected from throughout the text.
Author | : Rüdiger Göbel |
Publisher | : Walter de Gruyter |
Total Pages | : 1002 |
Release | : 2012-10-01 |
Genre | : Mathematics |
ISBN | : 3110218119 |
This second, revised and substantially extended edition of Approximations and Endomorphism Algebras of Modules reflects both the depth and the width of recent developments in the area since the first edition appeared in 2006. The new division of the monograph into two volumes roughly corresponds to its two central topics, approximation theory (Volume 1) and realization theorems for modules (Volume 2). It is a widely accepted fact that the category of all modules over a general associative ring is too complex to admit classification. Unless the ring is of finite representation type we must limit attempts at classification to some restricted subcategories of modules. The wild character of the category of all modules, or of one of its subcategories C, is often indicated by the presence of a realization theorem, that is, by the fact that any reasonable algebra is isomorphic to the endomorphism algebra of a module from C. This results in the existence of pathological direct sum decompositions, and these are generally viewed as obstacles to classification. In order to overcome this problem, the approximation theory of modules has been developed. The idea here is to select suitable subcategories C whose modules can be classified, and then to approximate arbitrary modules by those from C. These approximations are neither unique nor functorial in general, but there is a rich supply available appropriate to the requirements of various particular applications. The authors bring the two theories together. The first volume, Approximations, sets the scene in Part I by introducing the main classes of modules relevant here: the S-complete, pure-injective, Mittag-Leffler, and slender modules. Parts II and III of the first volume develop the key methods of approximation theory. Some of the recent applications to the structure of modules are also presented here, notably for tilting, cotilting, Baer, and Mittag-Leffler modules. In the second volume, Predictions, further basic instruments are introduced: the prediction principles, and their applications to proving realization theorems. Moreover, tools are developed there for answering problems motivated in algebraic topology. The authors concentrate on the impossibility of classification for modules over general rings. The wild character of many categories C of modules is documented here by the realization theorems that represent critical R-algebras over commutative rings R as endomorphism algebras of modules from C. The monograph starts from basic facts and gradually develops the theory towards its present frontiers. It is suitable both for graduate students interested in algebra and for experts in module and representation theory.
Author | : Daniel Simson |
Publisher | : CRC Press |
Total Pages | : 516 |
Release | : 1993-01-01 |
Genre | : Mathematics |
ISBN | : 9782881248283 |
This volume provides an elementary yet comprehensive introduction to representations of partially ordered sets and bimodule matrix problems, and their use in representation theory of algebras. It includes a discussion of representation types of algebras and partially ordered sets. Various characterizations of representation-finite and representation-tame partially ordered sets are offered and a description of their indecomposable representations is given. Auslander-Reiten theory is demonstrated together with a computer accessible algorithm for determining in decomposable representations and the Auslander-Reiten quiver of any representation-finite partially ordered set.
Author | : B. A. Davey |
Publisher | : Cambridge University Press |
Total Pages | : 316 |
Release | : 2002-04-18 |
Genre | : Mathematics |
ISBN | : 1107717523 |
This new edition of Introduction to Lattices and Order presents a radical reorganization and updating, though its primary aim is unchanged. The explosive development of theoretical computer science in recent years has, in particular, influenced the book's evolution: a fresh treatment of fixpoints testifies to this and Galois connections now feature prominently. An early presentation of concept analysis gives both a concrete foundation for the subsequent theory of complete lattices and a glimpse of a methodology for data analysis that is of commercial value in social science. Classroom experience has led to numerous pedagogical improvements and many new exercises have been added. As before, exposure to elementary abstract algebra and the notation of set theory are the only prerequisites, making the book suitable for advanced undergraduates and beginning graduate students. It will also be a valuable resource for anyone who meets ordered structures.
Author | : Royal Society of Edinburgh |
Publisher | : |
Total Pages | : 640 |
Release | : 1907 |
Genre | : Science |
ISBN | : |